train_detection.py 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 定义训练和验证时的transforms
  4. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
  5. train_transforms = T.Compose([
  6. T.MixupImage(mixup_epoch=250), T.RandomDistort(),
  7. T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
  8. T.RandomHorizontalFlip(), T.BatchRandomResize(
  9. target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
  10. interp='RANDOM'), T.Normalize(
  11. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  12. ])
  13. eval_transforms = T.Compose([
  14. T.Resize(
  15. 608, interp='CUBIC'), T.Normalize(
  16. mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  17. ])
  18. # 下载和解压表计检测数据集,如果已经预先下载,可注释掉下面两行
  19. meter_det_dataset = 'https://bj.bcebos.com/paddlex/examples/meter_reader/datasets/meter_det.tar.gz'
  20. pdx.utils.download_and_decompress(meter_det_dataset, path='./')
  21. # 定义训练和验证所用的数据集
  22. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/paddlex/cv/datasets/coco.py#L26
  23. train_dataset = pdx.datasets.CocoDetection(
  24. data_dir='meter_det/train/',
  25. ann_file='meter_det/annotations/instance_train.json',
  26. transforms=train_transforms,
  27. shuffle=True)
  28. eval_dataset = pdx.datasets.CocoDetection(
  29. data_dir='meter_det/test/',
  30. ann_file='meter_det/annotations/instance_test.json',
  31. transforms=eval_transforms)
  32. # 初始化模型,并进行训练
  33. # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标
  34. num_classes = len(train_dataset.labels)
  35. model = pdx.det.PPYOLOv2(num_classes=num_classes, backbone='ResNet50_vd_dcn')
  36. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155
  37. # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html
  38. model.train(
  39. num_epochs=170,
  40. train_dataset=train_dataset,
  41. train_batch_size=8,
  42. eval_dataset=eval_dataset,
  43. pretrain_weights='COCO',
  44. learning_rate=0.005 / 12,
  45. warmup_steps=1000,
  46. warmup_start_lr=0.0,
  47. lr_decay_epochs=[105, 135, 150],
  48. save_interval_epochs=5,
  49. save_dir='output/ppyolov2_r50vd_dcn')