| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <gflags/gflags.h>
- #include <omp.h>
- #include <memory>
- #include <string>
- #include <fstream>
- #include "model_deploy/common/include/multi_gpu_model.h"
- DEFINE_string(model_filename, "", "Path of det inference model");
- DEFINE_string(params_filename, "", "Path of det inference params");
- DEFINE_string(cfg_file, "", "Path of yaml file");
- DEFINE_string(model_type, "", "model type");
- DEFINE_string(image_list, "", "Path of test image file");
- DEFINE_string(gpu_id, "0", "GPU card id, example: 0,2,3");
- DEFINE_int32(batch_size, 1, "Batch size of infering");
- DEFINE_int32(thread_num, 1, "thread num of preprocessing");
- int main(int argc, char** argv) {
- google::ParseCommandLineFlags(&argc, &argv, true);
- std::vector<int> gpu_ids;
- std::stringstream gpu_ids_str(FLAGS_gpu_id);
- std::string temp;
- while (getline(gpu_ids_str, temp, ',')) {
- gpu_ids.push_back(std::stoi(temp));
- }
- for (auto gpu_id : gpu_ids) {
- std::cout << "gpu_id:" << gpu_id << std::endl;
- }
- std::cout << "start create model" << std::endl;
- // create model
- PaddleDeploy::MultiGPUModel model;
- if (!model.Init(FLAGS_model_type, FLAGS_cfg_file, gpu_ids.size())) {
- return -1;
- }
- // engine init
- PaddleDeploy::PaddleEngineConfig engine_config;
- engine_config.model_filename = FLAGS_model_filename;
- engine_config.params_filename = FLAGS_params_filename;
- engine_config.use_gpu = true;
- engine_config.max_batch_size = FLAGS_batch_size;
- if (!model.PaddleEngineInit(engine_config, gpu_ids)) {
- return -1;
- }
- // Mini-batch
- if (FLAGS_image_list == "") {
- std::cerr << "image_list should be defined" << std::endl;
- return -1;
- }
- std::vector<std::string> image_paths;
- std::ifstream inf(FLAGS_image_list);
- if (!inf) {
- std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
- return -1;
- }
- std::string image_path;
- while (getline(inf, image_path)) {
- image_paths.push_back(image_path);
- }
- std::cout << "start model predict " << image_paths.size() << std::endl;
- // infer
- std::vector<PaddleDeploy::Result> results;
- for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) {
- // Read image
- int im_vec_size =
- std::min(static_cast<int>(image_paths.size()), i + FLAGS_batch_size);
- std::vector<cv::Mat> im_vec(im_vec_size - i);
- #pragma omp parallel for num_threads(im_vec_size - i)
- for (int j = i; j < im_vec_size; ++j) {
- im_vec[j - i] = std::move(cv::imread(image_paths[j], 1));
- }
- model.Predict(im_vec, &results, FLAGS_thread_num);
- std::cout << i / FLAGS_batch_size << " group" << std::endl;
- for (auto j = 0; j < results.size(); ++j) {
- std::cout << "Result for sample " << j << std::endl;
- std::cout << results[j] << std::endl;
- }
- }
- return 0;
- }
|