| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import os
- import numpy as np
- from tqdm import tqdm
- from scipy.cluster.vq import kmeans
- from paddlex.utils import logging
- __all__ = ['YOLOAnchorCluster']
- class BaseAnchorCluster(object):
- def __init__(self, num_anchors, cache, cache_path):
- """
- Base Anchor Cluster
- Args:
- num_anchors (int): number of clusters
- cache (bool): whether using cache
- cache_path (str): cache directory path
- """
- super(BaseAnchorCluster, self).__init__()
- self.num_anchors = num_anchors
- self.cache_path = cache_path
- self.cache = cache
- def print_result(self, centers):
- raise NotImplementedError('%s.print_result is not available' %
- self.__class__.__name__)
- def get_whs(self):
- whs_cache_path = os.path.join(self.cache_path, 'whs.npy')
- shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy')
- if self.cache and os.path.exists(whs_cache_path) and os.path.exists(
- shapes_cache_path):
- self.whs = np.load(whs_cache_path)
- self.shapes = np.load(shapes_cache_path)
- return self.whs, self.shapes
- whs = np.zeros((0, 2))
- shapes = np.zeros((0, 2))
- samples = copy.deepcopy(self.dataset.file_list)
- for sample in tqdm(samples):
- im_h, im_w = sample['image_shape']
- bbox = sample['gt_bbox']
- wh = bbox[:, 2:4] - bbox[:, 0:2]
- wh = wh / np.array([[im_w, im_h]])
- shape = np.ones_like(wh) * np.array([[im_w, im_h]])
- whs = np.vstack((whs, wh))
- shapes = np.vstack((shapes, shape))
- if self.cache:
- os.makedirs(self.cache_path, exist_ok=True)
- np.save(whs_cache_path, whs)
- np.save(shapes_cache_path, shapes)
- self.whs = whs
- self.shapes = shapes
- return self.whs, self.shapes
- def calc_anchors(self):
- raise NotImplementedError('%s.calc_anchors is not available' %
- self.__class__.__name__)
- def __call__(self):
- self.get_whs()
- centers = self.calc_anchors()
- return centers
- class YOLOAnchorCluster(BaseAnchorCluster):
- def __init__(self,
- num_anchors,
- dataset,
- image_size,
- cache=True,
- cache_path=None,
- iters=300,
- gen_iters=1000,
- thresh=0.25):
- """
- YOLOv5 Anchor Cluster
- Reference:
- https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py
- Args:
- num_anchors (int): number of clusters
- dataset (DataSet): DataSet instance, VOC or COCO
- image_size (list or int): [h, w], being an int means image height and image width are the same.
- cache (bool): whether using cache。 Defaults to True.
- cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset. Defaults to None.
- iters (int, optional): iters of kmeans algorithm. Defaults to 300.
- gen_iters (int, optional): iters of genetic algorithm. Defaults to 1000.
- thresh (float, optional): anchor scale threshold. Defaults to 0.25.
- """
- self.dataset = dataset
- if cache_path is None:
- cache_path = self.dataset.data_dir
- if isinstance(image_size, int):
- image_size = [image_size] * 2
- self.image_size = image_size
- self.iters = iters
- self.gen_iters = gen_iters
- self.thresh = thresh
- super(YOLOAnchorCluster, self).__init__(num_anchors, cache, cache_path)
- def print_result(self, centers):
- whs = self.whs
- x, best = self.metric(whs, centers)
- bpr, aat = (best > self.thresh).mean(), (
- x > self.thresh).mean() * self.num_anchors
- logging.info(
- 'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' %
- (self.thresh, bpr, aat))
- logging.info(
- 'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
- % (self.num_anchors, self.image_size, x.mean(), best.mean(),
- x[x > self.thresh].mean()))
- logging.info('%d anchor cluster result: [w, h]' % self.num_anchors)
- for w, h in centers:
- logging.info('[%d, %d]' % (w, h))
- def metric(self, whs, centers):
- r = whs[:, None] / centers[None]
- x = np.minimum(r, 1. / r).min(2)
- return x, x.max(1)
- def fitness(self, whs, centers):
- _, best = self.metric(whs, centers)
- return (best * (best > self.thresh)).mean()
- def calc_anchors(self):
- self.whs = self.whs * self.shapes / self.shapes.max(
- 1, keepdims=True) * np.array([self.image_size[::-1]])
- wh0 = self.whs
- i = (wh0 < 3.0).any(1).sum()
- if i:
- logging.warning('Extremely small objects found. %d of %d '
- 'labels are < 3 pixels in width or height' %
- (i, len(wh0)))
- wh = wh0[(wh0 >= 2.0).any(1)]
- logging.info('Running kmeans for %g anchors on %g points...' %
- (self.num_anchors, len(wh)))
- s = wh.std(0)
- centers, dist = kmeans(wh / s, self.num_anchors, iter=self.iters)
- centers *= s
- f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1
- pbar = tqdm(
- range(self.gen_iters),
- desc='Evolving anchors with Genetic Algorithm')
- for _ in pbar:
- v = np.ones(sh)
- while (v == 1).all():
- v = ((np.random.random(sh) < mp) * np.random.random() *
- np.random.randn(*sh) * s + 1).clip(0.3, 3.0)
- new_centers = (centers.copy() * v).clip(min=2.0)
- new_f = self.fitness(wh, new_centers)
- if new_f > f:
- f, centers = new_f, new_centers.copy()
- pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
- centers = np.round(centers[np.argsort(centers.prod(1))]).astype(
- int).tolist()
- return centers
|