app.py 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from flask import Flask, request, render_template, send_from_directory, jsonify, session, send_file
  15. from werkzeug.utils import secure_filename
  16. from flask_cors import CORS
  17. import argparse
  18. from os import path as osp
  19. import os
  20. import time
  21. import json
  22. import sys
  23. import multiprocessing as mp
  24. from . import workspace_pb2 as w
  25. from .utils import CustomEncoder, ShareData, is_pic, get_logger, TaskStatus, get_ip
  26. import numpy as np
  27. app = Flask(__name__)
  28. CORS(app, supports_credentials=True)
  29. SESSION_TYPE = 'filesystem'
  30. app.config.from_object(__name__)
  31. SD = ShareData()
  32. def init(dirname, logger):
  33. #初始化工作空间
  34. from .workspace import init_workspace
  35. from .system import get_system_info
  36. SD.workspace = w.Workspace(path=dirname)
  37. init_workspace(SD.workspace, dirname, logger)
  38. SD.workspace_dir = dirname
  39. get_system_info(SD.machine_info)
  40. @app.errorhandler(Exception)
  41. def handle_exception(e):
  42. ret = {"status": -1, 'message': repr(e)}
  43. return ret
  44. @app.route('/workspace', methods=['GET', 'PUT'])
  45. def workspace():
  46. """
  47. methods=='GET':获取工作目录中项目、数据集、任务的属性
  48. Args:
  49. struct(str):结构类型,可以是'dataset', 'project'或'task',
  50. id(str):结构类型对应的id
  51. attr_list(list):需要获取的属性的列表
  52. Return:
  53. attr(dict):key为属性,value为属性的值,
  54. status
  55. methods=='PUT':修改工作目录中项目、数据集、任务的属性
  56. Args:
  57. struct(str):结构类型,可以是'dataset', 'project'或'task',
  58. id(str):结构类型对应的id
  59. attr_dict(dict):key:需要修改的属性,value:需要修改属性的值
  60. Return:
  61. status
  62. """
  63. data = request.get_json()
  64. if data is None:
  65. data = request.args
  66. if request.method == 'GET':
  67. if data:
  68. from .workspace import get_attr
  69. ret = get_attr(data, SD.workspace)
  70. return ret
  71. return {'status': 1, 'dirname': SD.workspace_dir}
  72. if request.method == 'PUT':
  73. from .workspace import set_attr
  74. ret = set_attr(data, SD.workspace)
  75. return ret
  76. @app.route('/dataset', methods=['GET', 'POST', 'PUT', 'DELETE'])
  77. def dataset():
  78. """
  79. methods=='GET':获取所有数据集或者单个数据集的信息
  80. Args:
  81. did(str, optional):数据集id(可选),如果存在就返回数据集id对应数据集的信息
  82. Ruturn:
  83. status
  84. if 'did' in Args:
  85. id(str):数据集id,
  86. dataset_status(int):数据集状态(DatasetStatus)枚举变量的值
  87. message(str):数据集状态信息
  88. attr(dict):数据集属性
  89. else:
  90. datasets(list):所有数据集属性的列表
  91. methods=='POST':创建一个新的数据集
  92. Args:
  93. name(str):数据集名字
  94. desc(str):数据集描述
  95. dataset_type(str):数据集类型,可以是['classification', 'detection', 'segmentation','instance_segmentation','remote_segmentation']
  96. Return:
  97. did(str):数据集id
  98. status
  99. methods=='PUT':异步,向数据集导入数据,支持分类、检测、语义分割、实例分割、摇杆分割数据集类型
  100. Args:
  101. did(str):数据集id
  102. path(str):数据集路径
  103. Return:
  104. status
  105. methods=='DELETE':删除已有的某个数据集
  106. Args:
  107. did(str):数据集id
  108. Return:
  109. status
  110. """
  111. data = request.get_json()
  112. if data is None:
  113. data = request.args
  114. if request.method == 'GET':
  115. if 'did' in data:
  116. from .dataset.dataset import get_dataset_status
  117. ret = get_dataset_status(data, SD.workspace)
  118. return ret
  119. from .dataset.dataset import list_datasets
  120. ret = list_datasets(SD.workspace)
  121. return ret
  122. if request.method == 'POST':
  123. from .dataset.dataset import create_dataset
  124. ret = create_dataset(data, SD.workspace)
  125. return ret
  126. if request.method == 'PUT':
  127. from .dataset.dataset import import_dataset
  128. ret = import_dataset(data, SD.workspace, SD.monitored_processes,
  129. SD.load_demo_proc_dict)
  130. return ret
  131. if request.method == 'DELETE':
  132. from .dataset.dataset import delete_dataset
  133. ret = delete_dataset(data, SD.workspace)
  134. return ret
  135. @app.route('/dataset/details', methods=['GET'])
  136. def dataset_details():
  137. """
  138. methods=='GET':获取某个数据集的详细信息
  139. Args:
  140. did(str):数据集id
  141. Return:
  142. details(dict):数据集详细信息,
  143. status
  144. """
  145. data = request.get_json()
  146. if data is None:
  147. data = request.args
  148. if request.method == 'GET':
  149. from .dataset.dataset import get_dataset_details
  150. ret = get_dataset_details(data, SD.workspace)
  151. return ret
  152. @app.route('/dataset/split', methods=['PUT'])
  153. def dataset_split():
  154. """
  155. Args:
  156. did(str):数据集id
  157. val_split(float): 验证集比例
  158. test_split(float): 测试集比例
  159. Return:
  160. status
  161. """
  162. data = request.get_json()
  163. if request.method == 'PUT':
  164. from .dataset.dataset import split_dataset
  165. ret = split_dataset(data, SD.workspace)
  166. return ret
  167. @app.route('/dataset/image', methods=['GET'])
  168. def dataset_img_base64():
  169. """
  170. Args:
  171. GET: 获取图片base64数据,参数:'path' 图片绝对路径
  172. """
  173. data = request.get_json()
  174. if request.method == 'GET':
  175. from .dataset.dataset import img_base64
  176. ret = img_base64(data)
  177. return ret
  178. @app.route('/dataset/file', methods=['GET'])
  179. def get_image_file():
  180. """
  181. Args:
  182. GET: 获取文件数据,参数:'path' 文件绝对路径
  183. """
  184. data = request.get_json()
  185. if request.method == 'GET':
  186. ret = data['path']
  187. assert os.path.abspath(ret).startswith(
  188. os.path.abspath(SD.workspace_dir)
  189. ) and ".." not in ret, "Illegal path {}.".format(ret)
  190. return send_file(ret)
  191. @app.route('/dataset/npy', methods=['GET'])
  192. def get_npyfile():
  193. """
  194. Args:
  195. GET: 获取文件数据,参数:'path' npy文件绝对路径
  196. """
  197. data = request.get_json()
  198. if request.method == 'GET':
  199. npy = np.load(data['path'], allow_pickle=True).tolist()
  200. npy['gt_bbox'] = npy['gt_bbox'].tolist()
  201. return npy
  202. @app.route('/file', methods=['GET'])
  203. def get_file():
  204. """
  205. Args:
  206. path'(str):文件在服务端的路径
  207. Return:
  208. #数据为图片
  209. img_data(str): base64图片数据
  210. status
  211. #数据为xml文件
  212. ret:数据流
  213. #数据为log文件
  214. ret:json数据
  215. """
  216. data = request.get_json()
  217. if data is None:
  218. data = request.args
  219. if request.method == 'GET':
  220. path = data['path']
  221. if not os.path.exists(path):
  222. return {'status': -1}
  223. if is_pic(path):
  224. from .dataset.dataset import img_base64
  225. ret = img_base64(data, SD.workspace)
  226. return ret
  227. file_type = path[(path.rfind('.') + 1):]
  228. if file_type in ['xml', 'npy', 'log']:
  229. return send_file(path)
  230. else:
  231. pass
  232. @app.route('/project', methods=['GET', 'POST', 'DELETE'])
  233. def project():
  234. """
  235. methods=='GET':获取指定项目id的信息
  236. Args:
  237. 'id'(str, optional):项目id,可选,如果存在就返回项目id对应项目的信息
  238. Return:
  239. status,
  240. if 'id' in Args:
  241. attr(dict):项目属性
  242. else:
  243. projects(list):所有项目属性
  244. methods=='POST':创建一个项目
  245. Args:
  246. name(str): 项目名
  247. desc(str):项目描述
  248. project_type(str):项目类型
  249. Return:
  250. pid(str):项目id
  251. status
  252. methods=='DELETE':删除一个项目,以及项目相关的task
  253. Args:
  254. pid(str):项目id
  255. Return:
  256. status
  257. """
  258. data = request.get_json()
  259. if data is None:
  260. data = request.args
  261. if request.method == 'GET':
  262. from .project.project import list_projects
  263. from .project.project import get_project
  264. if 'id' in data:
  265. ret = get_project(data, SD.workspace)
  266. return ret
  267. ret = list_projects(SD.workspace)
  268. return ret
  269. if request.method == 'POST':
  270. from .project.project import create_project
  271. ret = create_project(data, SD.workspace)
  272. return ret
  273. if request.method == 'DELETE':
  274. from .project.project import delete_project
  275. ret = delete_project(data, SD.workspace)
  276. return ret
  277. @app.route('/project/task', methods=['GET', 'POST', 'DELETE'])
  278. def task():
  279. """
  280. methods=='GET':#获取某个任务的信息或者所有任务的信息
  281. Args:
  282. tid(str, optional):任务id,可选,若存在即返回id对应任务的信息
  283. resume(str, optional):获取是否可以恢复训练的状态,可选,需在存在tid的情况下才生效
  284. pid(str, optional):项目id,可选,若存在即返回该项目id下所有任务信息
  285. Return:
  286. status
  287. if 'tid' in Args:
  288. task_status(int):任务状态(TaskStatus)枚举变量的值
  289. message(str):任务状态信息
  290. type:任务类型包括{'classification', 'detection', 'segmentation', 'instance_segmentation'}
  291. resumable(bool):仅Args中存在resume时返回,任务训练是否可以恢复
  292. max_saved_epochs(int):仅Args中存在resume时返回,当前训练模型保存的最大epoch
  293. else:
  294. tasks(list):所有任务属性
  295. methods=='POST':#创建任务(训练或者裁剪)
  296. Args:
  297. pid(str):项目id
  298. train(dict):训练参数
  299. desc(str, optional):任务描述,可选
  300. parent_id(str, optional):可选,若存在即表示新建的任务为裁剪任务,parent_id的值为裁剪任务对应的训练任务id
  301. Return:
  302. tid(str):任务id
  303. status
  304. methods=='DELETE':#删除任务
  305. Args:
  306. tid(str):任务id
  307. Return:
  308. status
  309. """
  310. data = request.get_json()
  311. if data is None:
  312. data = request.args
  313. if request.method == 'GET':
  314. if data:
  315. if 'pid' not in data:
  316. from .project.task import get_task_status
  317. ret = get_task_status(data, SD.workspace)
  318. return ret
  319. from .project.task import list_tasks
  320. ret = list_tasks(data, SD.workspace)
  321. return ret
  322. if request.method == 'POST':
  323. from .project.task import create_task
  324. ret = create_task(data, SD.workspace)
  325. return ret
  326. if request.method == 'DELETE':
  327. from .project.task import delete_task
  328. ret = delete_task(data, SD.workspace)
  329. return ret
  330. @app.route('/project/task/params', methods=['GET', 'POST'])
  331. def task_params():
  332. """
  333. methods=='GET':#获取任务id对应的参数,或者获取项目默认参数
  334. Args:
  335. tid(str, optional):获取任务对应的参数
  336. pid(str,optional):获取项目对应的默认参数
  337. model_type(str,optional):pid存在下有效,对应项目下获取指定模型的默认参数
  338. gpu_list(list,optional):pid存在下有效,默认值为[0],使用指定的gpu并获取相应的默认参数
  339. Return:
  340. train(dict):训练或者裁剪的参数
  341. status
  342. methods=='POST':#设置任务参数,将前端用户设置训练参数dict保存在后端的pkl文件中
  343. Args:
  344. tid(str):任务id
  345. train(dict):训练参数
  346. Return:
  347. status
  348. """
  349. data = request.get_json()
  350. if data is None:
  351. data = request.args
  352. if request.method == 'GET':
  353. if 'tid' in data:
  354. from .project.task import get_task_params
  355. ret = get_task_params(data, SD.workspace)
  356. ret['train'] = CustomEncoder().encode(ret['train'])
  357. ret['train'] = json.loads(ret['train'])
  358. return ret
  359. if 'pid' in data:
  360. from .project.task import get_default_params
  361. ret = get_default_params(data, SD.workspace, SD.machine_info)
  362. return ret
  363. if request.method == 'POST':
  364. from .project.task import set_task_params
  365. ret = set_task_params(data, SD.workspace)
  366. return ret
  367. @app.route('/project/task/metrics', methods=['GET'])
  368. def task_metrics():
  369. """
  370. methods=='GET':#获取日志数据
  371. Args:
  372. tid(str):任务id
  373. type(str):可以获取日志的类型,[train,eval,sensitivities,prune],包括训练,评估,敏感度与模型裁剪率关系图,裁剪的日志
  374. Return:
  375. status
  376. if type == 'train':
  377. train_log(dict): 训练日志
  378. elif type == 'eval':
  379. eval_metrics(dict): 评估结果
  380. elif type == 'sensitivities':
  381. sensitivities_loss_img(dict): 敏感度与模型裁剪率关系图
  382. elif type == 'prune':
  383. prune_log(dict):裁剪日志
  384. """
  385. data = request.get_json()
  386. if data is None:
  387. data = request.args
  388. if request.method == 'GET':
  389. if data['type'] == 'train':
  390. from .project.task import get_train_metrics
  391. ret = get_train_metrics(data, SD.workspace)
  392. return ret
  393. if data['type'] == 'eval':
  394. from .project.task import get_eval_metrics
  395. ret = get_eval_metrics(data, SD.workspace)
  396. return ret
  397. if data['type'] == 'eval_all':
  398. from .project.task import get_eval_all_metrics
  399. ret = get_eval_all_metrics(data, SD.workspace)
  400. return ret
  401. if data['type'] == 'sensitivities':
  402. from .project.task import get_sensitivities_loss_img
  403. ret = get_sensitivities_loss_img(data, SD.workspace)
  404. return ret
  405. if data['type'] == 'prune':
  406. from .project.task import get_prune_metrics
  407. ret = get_prune_metrics(data, SD.workspace)
  408. return ret
  409. @app.route('/project/task/train', methods=['POST', 'PUT'])
  410. def task_train():
  411. """
  412. methods=='POST':#异步,启动训练或者裁剪任务
  413. Args:
  414. tid(str):任务id
  415. eval_metric_loss(int,optional):可选,裁剪任务时可用,裁剪任务所需的评估loss
  416. Return:
  417. status
  418. methods=='PUT':#改变任务训练的状态,即终止训练或者恢复训练
  419. Args:
  420. tid(str):任务id
  421. act(str):[stop,resume]暂停或者恢复
  422. epoch(int):(resume下可以设置)恢复训练的起始轮数
  423. Return:
  424. status
  425. """
  426. data = request.get_json()
  427. if request.method == 'POST':
  428. from .project.task import start_train_task
  429. ret = start_train_task(data, SD.workspace, SD.monitored_processes)
  430. return ret
  431. if request.method == 'PUT':
  432. if data['act'] == 'resume':
  433. from .project.task import resume_train_task
  434. ret = resume_train_task(data, SD.workspace, SD.monitored_processes)
  435. return ret
  436. if data['act'] == 'stop':
  437. from .project.task import stop_train_task
  438. ret = stop_train_task(data, SD.workspace)
  439. return ret
  440. @app.route('/project/task/train/file', methods=['GET'])
  441. def log_file():
  442. data = request.get_json()
  443. if request.method == 'GET':
  444. path = data['path']
  445. if not os.path.exists(path):
  446. return {'status': -1}
  447. logs = open(path, encoding='utf-8').readlines()
  448. if len(logs) < 50:
  449. return {'status': 1, 'log': logs}
  450. else:
  451. logs = logs[-50:]
  452. return {'status': 1, 'log': logs}
  453. @app.route('/project/task/prune', methods=['GET', 'POST', 'PUT'])
  454. def task_prune():
  455. """
  456. methods=='GET':#获取裁剪任务的状态
  457. Args:
  458. tid(str):任务id
  459. Return:
  460. prune_status(int): 裁剪任务状态(PruneStatus)枚举变量的值
  461. status
  462. methods=='POST':#异步,创建一个裁剪分析,对于启动裁剪任务前需要先启动裁剪分析
  463. Args:
  464. tid(str):任务id
  465. Return:
  466. status
  467. methods=='PUT':#改变裁剪分析任务的状态
  468. Args:
  469. tid(str):任务id
  470. act(str):[stop],目前仅支持停止一个裁剪分析任务
  471. Return
  472. status
  473. """
  474. data = request.get_json()
  475. if data is None:
  476. data = request.args
  477. if request.method == 'GET':
  478. from .project.task import get_prune_status
  479. ret = get_prune_status(data, SD.workspace)
  480. return ret
  481. if request.method == 'POST':
  482. from .project.task import start_prune_analysis
  483. ret = start_prune_analysis(data, SD.workspace, SD.monitored_processes)
  484. return ret
  485. if request.method == 'PUT':
  486. if data['act'] == 'stop':
  487. from .project.task import stop_prune_analysis
  488. ret = stop_prune_analysis(data, SD.workspace)
  489. return ret
  490. @app.route('/project/task/evaluate', methods=['GET', 'POST'])
  491. def task_evaluate():
  492. '''
  493. methods=='GET':#获取模型评估的结果
  494. Args:
  495. tid(str):任务id
  496. Return:
  497. evaluate_status(int): 任务状态(TaskStatus)枚举变量的值
  498. message(str):描述评估任务的信息
  499. result(dict):如果评估成功,返回评估结果的dict,否则为None
  500. status
  501. methods=='POST':#异步,创建一个评估任务
  502. Args:
  503. tid(str):任务id
  504. epoch(int,optional):需要评估的epoch,如果为None则会评估训练时指标最好的epoch
  505. topk(int,optional):分类任务topk指标,如果为None默认输入为5
  506. score_thresh(float):检测任务类别的score threshhold值,如果为None默认输入为0.5
  507. overlap_thresh(float):实例分割任务IOU threshhold值,如果为None默认输入为0.3
  508. Return:
  509. status
  510. '''
  511. data = request.get_json()
  512. if data is None:
  513. data = request.args
  514. if request.method == 'GET':
  515. from .project.task import get_evaluate_result
  516. ret = get_evaluate_result(data, SD.workspace)
  517. if ret['evaluate_status'] == TaskStatus.XEVALUATED and ret[
  518. 'result'] is not None:
  519. if 'Confusion_Matrix' in ret['result']:
  520. ret['result']['Confusion_Matrix'] = ret['result'][
  521. 'Confusion_Matrix'].tolist()
  522. ret['result'] = CustomEncoder().encode(ret['result'])
  523. ret['result'] = json.loads(ret['result'])
  524. ret['evaluate_status'] = ret['evaluate_status'].value
  525. return ret
  526. if request.method == 'POST':
  527. from .project.task import evaluate_model
  528. ret = evaluate_model(data, SD.workspace, SD.monitored_processes)
  529. return ret
  530. @app.route('/project/task/evaluate/file', methods=['GET'])
  531. def task_evaluate_file():
  532. data = request.get_json()
  533. if request.method == 'GET':
  534. if 'path' in data:
  535. ret = data['path']
  536. assert os.path.abspath(ret).startswith(
  537. os.path.abspath(SD.workspace_dir)
  538. ) and ".." not in ret, "Illegal path {}.".format(ret)
  539. return send_file(ret)
  540. else:
  541. from .project.task import get_evaluate_result
  542. from .project.task import import_evaluate_excel
  543. ret = get_evaluate_result(data, SD.workspace)
  544. if ret['evaluate_status'] == TaskStatus.XEVALUATED and ret[
  545. 'result'] is not None:
  546. result = ret['result']
  547. excel_ret = dict()
  548. excel_ret = import_evaluate_excel(data, result, SD.workspace)
  549. return excel_ret
  550. else:
  551. excel_ret = dict()
  552. excel_ret['path'] = None
  553. excel_ret['status'] = -1
  554. excel_ret['message'] = "评估尚未完成或评估失败"
  555. return excel_ret
  556. @app.route('/project/task/predict', methods=['GET', 'POST', 'PUT'])
  557. def task_predict():
  558. '''
  559. methods=='GET':#获取预测状态
  560. Args:
  561. tid(str):任务id
  562. Return:
  563. predict_status(int): 预测任务状态(PredictStatus)枚举变量的值
  564. message(str): 预测信息
  565. status
  566. methods=='POST':#创建预测任务,目前仅支持单张图片的预测
  567. Args:
  568. tid(str):任务id
  569. image_data(str):base64编码的image数据
  570. score_thresh(float,optional):可选,检测任务时有效,检测类别的score threashold值默认是0.5
  571. epoch(int,float,optional):可选,选择需要做预测的ephoch,默认为评估指标最好的那一个epoch
  572. Return:
  573. path(str):服务器上保存预测结果图片的路径
  574. status
  575. '''
  576. data = request.get_json()
  577. if data is None:
  578. data = request.args
  579. if request.method == 'GET':
  580. from .project.task import get_predict_status
  581. ret = get_predict_status(data, SD.workspace)
  582. return ret
  583. if request.method == 'POST':
  584. from .project.task import predict_test_pics
  585. ret = predict_test_pics(data, SD.workspace, SD.monitored_processes)
  586. if 'img_list' in data:
  587. del ret['path']
  588. return ret
  589. return ret
  590. if request.method == 'PUT':
  591. from .project.task import stop_predict_task
  592. ret = stop_predict_task(data, SD.workspace)
  593. return ret
  594. @app.route('/project/task/export', methods=['GET', 'POST', 'PUT'])
  595. def task_export():
  596. '''
  597. methods=='GET':#获取导出模型的状态
  598. Args:
  599. tid(str):任务id
  600. quant(str,optional)可选,[log,result],导出量模型导出状态,若值为log则返回量化的日志;若值为result则返回量化的结果
  601. Return:
  602. status
  603. if quant == 'log':
  604. quant_log(dict):量化日志
  605. if quant == 'result'
  606. quant_result(dict):量化结果
  607. if quant not in Args:
  608. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  609. message(str):模型导出提示信息
  610. methods=='POST':#导出inference模型或者导出lite模型
  611. Args:
  612. tid(str):任务id
  613. type(str):保存模型的类别[infer,lite],支持inference模型导出和lite的模型导出
  614. save_dir(str):保存模型的路径
  615. epoch(str,optional)可选,指定导出的epoch数默认为评估效果最好的epoch
  616. quant(bool,optional)可选,type为infer有效,是否导出量化后的模型,默认为False
  617. model_path(str,optional)可选,type为lite时有效,inference模型的地址
  618. Return:
  619. status
  620. if type == 'infer':
  621. save_dir:模型保存路径
  622. if type == 'lite':
  623. message:模型保存信息
  624. methods=='PUT':#停止导出模型
  625. Args:
  626. tid(str):任务id
  627. Return:
  628. export_status(int):模型导出状态(PredictStatus)枚举变量的值
  629. message(str):停止模型导出提示信息
  630. status
  631. '''
  632. data = request.get_json()
  633. if data is None:
  634. data = request.args
  635. if request.method == 'GET':
  636. if 'quant' in data:
  637. if data['quant'] == 'log':
  638. from .project.task import get_quant_progress
  639. ret = get_quant_progress(data, SD.workspace)
  640. return ret
  641. if data['quant'] == 'result':
  642. from .project.task import get_quant_result
  643. ret = get_quant_result(data, SD.workspace)
  644. return ret
  645. from .project.task import get_export_status
  646. ret = get_export_status(data, SD.workspace)
  647. ret['export_status'] = ret['export_status'].value
  648. return ret
  649. if request.method == 'POST':
  650. if data['type'] == 'infer':
  651. from .project.task import export_infer_model
  652. ret = export_infer_model(data, SD.workspace,
  653. SD.monitored_processes)
  654. return ret
  655. if data['type'] == 'lite':
  656. from .project.task import export_lite_model
  657. ret = export_lite_model(data, SD.workspace)
  658. return ret
  659. if request.method == 'PUT':
  660. from .project.task import stop_export_task
  661. stop_export_task(data, SD.workspace)
  662. return ret
  663. @app.route('/project/task/vdl', methods=['GET'])
  664. def task_vdl():
  665. '''
  666. methods=='GET':#打开某个任务的可视化分析工具(VisualDL)
  667. Args:
  668. tid(str):任务id
  669. Return:
  670. url(str):vdl地址
  671. status
  672. '''
  673. data = request.get_json()
  674. if data is None:
  675. data = request.args
  676. if request.method == 'GET':
  677. from .project.task import open_vdl
  678. ret = open_vdl(data, SD.workspace, SD.current_port,
  679. SD.monitored_processes, SD.running_boards)
  680. return ret
  681. @app.route('/system', methods=['GET', 'DELETE'])
  682. def system():
  683. '''
  684. methods=='GET':#获取系统GPU、CPU信息
  685. Args:
  686. type(str):[machine_info,gpu_memory_size]选择需要获取的系统信息
  687. Return:
  688. status
  689. if type=='machine_info'
  690. info(dict):服务端信息
  691. if type=='gpu_memory_size'
  692. gpu_mem_infos(list):GPU内存信息
  693. '''
  694. data = request.get_json()
  695. if data is None:
  696. data = request.args
  697. if request.method == 'GET':
  698. if data['type'] == 'machine_info':
  699. '''if 'path' not in data:
  700. data['path'] = None
  701. from .system import get_machine_info
  702. ret = get_machine_info(data, SD.machine_info)'''
  703. from .system import get_system_info
  704. ret = get_system_info(SD.machine_info)
  705. return ret
  706. if data['type'] == 'gpu_memory_size':
  707. #from .system import get_gpu_memory_size
  708. from .system import get_gpu_memory_info
  709. ret = get_gpu_memory_info(SD.machine_info)
  710. return ret
  711. if request.method == 'DELETE':
  712. from .system import exit_system
  713. ret = exit_system(SD.monitored_processes)
  714. return ret
  715. @app.route('/demo', methods=['GET', 'POST', 'PUT'])
  716. def demo():
  717. '''
  718. methods=='GET':#获取demo下载进度
  719. Args:
  720. prj_type(int):项目类型ProjectType枚举变量的int值
  721. Return:
  722. status
  723. attr(dict):demo下载信息
  724. methods=='POST':#下载或创建demo工程
  725. Args:
  726. type(str):{download,load}下载或者创建样例
  727. prj_type(int):项目类型ProjectType枚举变量的int值
  728. Return:
  729. status
  730. if type=='load':
  731. did:数据集id
  732. pid:项目id
  733. methods=='PUT':#停止下载或创建demo工程
  734. Args:
  735. prj_type(int):项目类型ProjectType枚举变量的int值
  736. Return:
  737. status
  738. '''
  739. data = request.get_json()
  740. if data is None:
  741. data = request.args
  742. if request.method == 'GET':
  743. from .demo import get_download_demo_progress
  744. ret = get_download_demo_progress(data, SD.workspace)
  745. return ret
  746. if request.method == 'POST':
  747. if data['type'] == 'download':
  748. from .demo import download_demo_dataset
  749. ret = download_demo_dataset(data, SD.workspace,
  750. SD.load_demo_proc_dict)
  751. return ret
  752. if data['type'] == 'load':
  753. from .demo import load_demo_project
  754. ret = load_demo_project(data, SD.workspace, SD.monitored_processes,
  755. SD.load_demo_proj_data_dict,
  756. SD.load_demo_proc_dict)
  757. return ret
  758. if request.method == 'PUT':
  759. from .demo import stop_import_demo
  760. ret = stop_import_demo(data, SD.workspace, SD.load_demo_proc_dict,
  761. SD.load_demo_proj_data_dict)
  762. return ret
  763. @app.route('/model', methods=['GET', 'POST', 'DELETE'])
  764. def model():
  765. '''
  766. methods=='GET':#获取一个或者所有模型的信息
  767. Args:
  768. mid(str,optional)可选,若存在则返回某个模型的信息
  769. type(str,optional)可选,[pretrained,exported].若存在则返回对应类型下所有的模型信息
  770. Return:
  771. status
  772. if mid in Args:
  773. dataset_attr(dict):数据集属性
  774. task_params(dict):模型训练参数
  775. eval_result(dict):模型评估结果
  776. if type in Args and type == 'pretrained':
  777. pretrained_models(list):所有预训练模型信息
  778. if type in Args and type == 'exported':
  779. exported_models(list):所有inference模型的信息
  780. methods=='POST':#创建一个模型
  781. Args:
  782. pid(str):项目id
  783. tid(str):任务id
  784. name(str):模型名字
  785. type(str):创建模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  786. source_path(str):仅type为pretrained时有效,训练好的模型的路径
  787. path(str):仅type为exported时有效,inference或者lite模型的路径
  788. exported_type(int):0为inference模型,1为lite模型
  789. eval_results(dict,optional):可选,仅type为pretrained时有效,模型评估的指标
  790. Return:
  791. status
  792. if type == 'pretrained':
  793. pmid(str):预训练模型id
  794. if type == 'exported':
  795. emid(str):inference模型id
  796. methods=='DELETE':删除一个模型
  797. Args:
  798. type(str):删除模型的类型,[pretrained,exported],pretrained代表创建预训练模型、exported代表创建inference或者lite模型
  799. if type='pretrained':
  800. pmid:预训练模型id
  801. if type='exported':
  802. emid:inference或者lite模型id
  803. Return:
  804. status
  805. '''
  806. data = request.get_json()
  807. if data is None:
  808. data = request.args
  809. if request.method == 'GET':
  810. if 'type' in data:
  811. if data['type'] == 'pretrained':
  812. from .model import list_pretrained_models
  813. ret = list_pretrained_models(SD.workspace)
  814. return ret
  815. if data['type'] == 'exported':
  816. from .model import list_exported_models
  817. ret = list_exported_models(SD.workspace)
  818. return ret
  819. from .model import get_model_details
  820. ret = get_model_details(data, SD.workspace)
  821. ret['eval_result']['Confusion_Matrix'] = ret['eval_result'][
  822. 'Confusion_Matrix'].tolist()
  823. ret['eval_result'] = CustomEncoder().encode(ret['eval_result'])
  824. ret['task_params'] = CustomEncoder().encode(ret['task_params'])
  825. return ret
  826. if request.method == 'POST':
  827. if data['type'] == 'pretrained':
  828. if 'eval_results' in data:
  829. data['eval_results']['Confusion_Matrix'] = np.array(data[
  830. 'eval_results']['Confusion_Matrix'])
  831. from .model import create_pretrained_model
  832. ret = create_pretrained_model(data, SD.workspace,
  833. SD.monitored_processes)
  834. return ret
  835. if data['type'] == 'exported':
  836. from .model import create_exported_model
  837. ret = create_exported_model(data, SD.workspace)
  838. return ret
  839. if request.method == 'DELETE':
  840. if data['type'] == 'pretrained':
  841. from .model import delete_pretrained_model
  842. ret = delete_pretrained_model(data, SD.workspace)
  843. return ret
  844. if data['type'] == 'exported':
  845. from .model import delete_exported_model
  846. ret = delete_exported_model(data, SD.workspace)
  847. return ret
  848. @app.route('/model/file', methods=['GET'])
  849. def model_file():
  850. data = request.get_json()
  851. if request.method == 'GET':
  852. ret = data['path']
  853. assert os.path.abspath(ret).startswith(
  854. os.path.abspath(SD.workspace_dir)
  855. ) and ".." not in ret, "Illegal path {}.".format(ret)
  856. return send_file(ret)
  857. @app.route('/', methods=['GET'])
  858. def gui():
  859. if request.method == 'GET':
  860. file_path = osp.join(
  861. osp.dirname(__file__), 'templates', 'paddlex_restful_demo.html')
  862. ip = get_ip()
  863. url = 'var str_srv_url = "http://' + ip + ':' + str(SD.port) + '";'
  864. f = open(file_path, 'r+')
  865. lines = f.readlines()
  866. for i, line in enumerate(lines):
  867. if '0.0.0.0:8080' in line:
  868. lines[i] = url
  869. break
  870. f.close()
  871. f = open(file_path, 'w+')
  872. f.writelines(lines)
  873. f.close()
  874. return render_template('/paddlex_restful_demo.html')
  875. def run(port, workspace_dir):
  876. if workspace_dir is None:
  877. user_home = os.path.expanduser('~')
  878. dirname = osp.join(user_home, "paddlex_workspace")
  879. else:
  880. dirname = workspace_dir
  881. if not osp.exists(dirname):
  882. os.makedirs(dirname)
  883. else:
  884. if not osp.isdir(dirname):
  885. os.remove(dirname)
  886. os.makedirs(dirname)
  887. logger = get_logger(osp.join(dirname, "mcessages.log"))
  888. init(dirname, logger)
  889. SD.port = port
  890. ip = get_ip()
  891. url = ip + ':' + str(port)
  892. try:
  893. logger.info("RESTful服务启动成功后,您可以在浏览器打开 {} 使用WEB版本GUI".format(url))
  894. app.run(host='0.0.0.0', port=port, threaded=True)
  895. except:
  896. print("服务启动不成功,请确保端口号:{}未被防火墙限制".format(port))