coco.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. import copy
  16. import os.path as osp
  17. import six
  18. import sys
  19. import numpy as np
  20. from paddlex.utils import logging, is_pic, get_num_workers
  21. from .voc import VOCDetection
  22. from paddlex.cv.transforms import MixupImage
  23. class CocoDetection(VOCDetection):
  24. """读取MSCOCO格式的检测数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。
  25. Args:
  26. data_dir (str): 数据集所在的目录路径。
  27. ann_file (str): 数据集的标注文件,为一个独立的json格式文件。
  28. transforms (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子。
  29. num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
  30. 系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的一半。
  31. shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
  32. allow_empty (bool): 是否加载负样本。默认为False。
  33. """
  34. def __init__(self,
  35. data_dir,
  36. ann_file,
  37. transforms=None,
  38. num_workers='auto',
  39. shuffle=False,
  40. allow_empty=False):
  41. # matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
  42. # or matplotlib.backends is imported for the first time
  43. # pycocotools import matplotlib
  44. import matplotlib
  45. matplotlib.use('Agg')
  46. from pycocotools.coco import COCO
  47. try:
  48. import shapely.ops
  49. from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
  50. except:
  51. six.reraise(*sys.exc_info())
  52. super(VOCDetection, self).__init__()
  53. self.data_fields = None
  54. self.transforms = copy.deepcopy(transforms)
  55. self.num_max_boxes = 50
  56. self.use_mix = False
  57. if self.transforms is not None:
  58. for op in self.transforms.transforms:
  59. if isinstance(op, MixupImage):
  60. self.mixup_op = copy.deepcopy(op)
  61. self.use_mix = True
  62. self.num_max_boxes *= 2
  63. break
  64. self.batch_transforms = None
  65. self.num_workers = get_num_workers(num_workers)
  66. self.shuffle = shuffle
  67. self.allow_empty = allow_empty
  68. self.file_list = list()
  69. self.neg_file_list = list()
  70. self.labels = list()
  71. coco = COCO(ann_file)
  72. self.coco_gt = coco
  73. img_ids = sorted(coco.getImgIds())
  74. cat_ids = coco.getCatIds()
  75. catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
  76. cname2clsid = dict({
  77. coco.loadCats(catid)[0]['name']: clsid
  78. for catid, clsid in catid2clsid.items()
  79. })
  80. for label, cid in sorted(cname2clsid.items(), key=lambda d: d[1]):
  81. self.labels.append(label)
  82. logging.info("Starting to read file list from dataset...")
  83. ct = 0
  84. for img_id in img_ids:
  85. is_empty = False
  86. img_anno = coco.loadImgs(img_id)[0]
  87. im_fname = osp.join(data_dir, img_anno['file_name'])
  88. if not is_pic(im_fname):
  89. continue
  90. im_w = float(img_anno['width'])
  91. im_h = float(img_anno['height'])
  92. ins_anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
  93. instances = coco.loadAnns(ins_anno_ids)
  94. bboxes = []
  95. for inst in instances:
  96. x, y, box_w, box_h = inst['bbox']
  97. x1 = max(0, x)
  98. y1 = max(0, y)
  99. x2 = min(im_w - 1, x1 + max(0, box_w))
  100. y2 = min(im_h - 1, y1 + max(0, box_h))
  101. if inst['area'] > 0 and x2 >= x1 and y2 >= y1:
  102. inst['clean_bbox'] = [x1, y1, x2, y2]
  103. bboxes.append(inst)
  104. else:
  105. logging.warning(
  106. "Found an invalid bbox in annotations: "
  107. "im_id: {}, area: {} x1: {}, y1: {}, x2: {}, y2: {}."
  108. .format(img_id, float(inst['area']), x1, y1, x2, y2))
  109. num_bbox = len(bboxes)
  110. if num_bbox == 0 and not self.allow_empty:
  111. continue
  112. elif num_bbox == 0:
  113. is_empty = True
  114. gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
  115. gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
  116. gt_score = np.ones((num_bbox, 1), dtype=np.float32)
  117. is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
  118. difficult = np.zeros((num_bbox, 1), dtype=np.int32)
  119. gt_poly = [None] * num_bbox
  120. has_segmentation = False
  121. for i, box in reversed(list(enumerate(bboxes))):
  122. catid = box['category_id']
  123. gt_class[i][0] = catid2clsid[catid]
  124. gt_bbox[i, :] = box['clean_bbox']
  125. is_crowd[i][0] = box['iscrowd']
  126. if 'segmentation' in box and box['iscrowd'] == 1:
  127. gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
  128. elif 'segmentation' in box and box['segmentation']:
  129. if not np.array(box[
  130. 'segmentation']).size > 0 and not self.allow_empty:
  131. gt_poly.pop(i)
  132. np.delete(is_crowd, i)
  133. np.delete(gt_class, i)
  134. np.delete(gt_bbox, i)
  135. else:
  136. gt_poly[i] = box['segmentation']
  137. has_segmentation = True
  138. if has_segmentation and not any(gt_poly) and not self.allow_empty:
  139. continue
  140. im_info = {
  141. 'im_id': np.array([img_id]).astype('int32'),
  142. 'image_shape': np.array([im_h, im_w]).astype('int32'),
  143. }
  144. label_info = {
  145. 'is_crowd': is_crowd,
  146. 'gt_class': gt_class,
  147. 'gt_bbox': gt_bbox,
  148. 'gt_score': gt_score,
  149. 'gt_poly': gt_poly,
  150. 'difficult': difficult
  151. }
  152. if is_empty:
  153. self.neg_file_list.append({
  154. 'image': im_fname,
  155. **
  156. im_info,
  157. **
  158. label_info
  159. })
  160. else:
  161. self.file_list.append({
  162. 'image': im_fname,
  163. **
  164. im_info,
  165. **
  166. label_info
  167. })
  168. ct += 1
  169. if self.use_mix:
  170. self.num_max_boxes = max(self.num_max_boxes,
  171. 2 * len(instances))
  172. else:
  173. self.num_max_boxes = max(self.num_max_boxes, len(instances))
  174. if not ct:
  175. logging.error(
  176. "No coco record found in %s' % (ann_file)", exit=True)
  177. logging.info(
  178. "{} samples in file {}, including {} positive samples and {} negative samples.".
  179. format(
  180. len(self.file_list) + len(self.neg_file_list), ann_file,
  181. len(self.file_list), len(self.neg_file_list)))
  182. if self.allow_empty:
  183. self.file_list += self.neg_file_list
  184. self.num_samples = len(self.file_list)
  185. self._epoch = 0