| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- #Licensed under the Apache License, Version 2.0 (the "License");
- #you may not use this file except in compliance with the License.
- #You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- #Unless required by applicable law or agreed to in writing, software
- #distributed under the License is distributed on an "AS IS" BASIS,
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- #See the License for the specific language governing permissions and
- #limitations under the License.
- import os
- import numpy as np
- import glob
- from ..as_data_reader.readers import read_image
- from . import lime_base
- from ._session_preparation import compute_features_for_kmeans, h_pre_models_kmeans
- def load_kmeans_model(fname):
- import pickle
- with open(fname, 'rb') as f:
- kmeans_model = pickle.load(f)
- return kmeans_model
- def combine_normlime_and_lime(lime_weights, g_weights):
- pred_labels = lime_weights.keys()
- combined_weights = {y: [] for y in pred_labels}
- for y in pred_labels:
- normlized_lime_weights_y = lime_weights[y]
- lime_weights_dict = {tuple_w[0]: tuple_w[1] for tuple_w in normlized_lime_weights_y}
- normlized_g_weight_y = g_weights[y]
- normlime_weights_dict = {tuple_w[0]: tuple_w[1] for tuple_w in normlized_g_weight_y}
- combined_weights[y] = [
- (seg_k, lime_weights_dict[seg_k] * normlime_weights_dict[seg_k])
- for seg_k in lime_weights_dict.keys()
- ]
- combined_weights[y] = sorted(combined_weights[y],
- key=lambda x: np.abs(x[1]), reverse=True)
- return combined_weights
- def avg_using_superpixels(features, segments):
- one_list = np.zeros((len(np.unique(segments)), features.shape[2]))
- for x in np.unique(segments):
- one_list[x] = np.mean(features[segments == x], axis=0)
- return one_list
- def centroid_using_superpixels(features, segments):
- from skimage.measure import regionprops
- regions = regionprops(segments + 1)
- one_list = np.zeros((len(np.unique(segments)), features.shape[2]))
- for i, r in enumerate(regions):
- one_list[i] = features[int(r.centroid[0] + 0.5), int(r.centroid[1] + 0.5), :]
- # print(one_list.shape)
- return one_list
- def get_feature_for_kmeans(feature_map, segments):
- from sklearn.preprocessing import normalize
- centroid_feature = centroid_using_superpixels(feature_map, segments)
- avg_feature = avg_using_superpixels(feature_map, segments)
- x = np.concatenate((centroid_feature, avg_feature), axis=-1)
- x = normalize(x)
- return x
- def precompute_normlime_weights(list_data_, predict_fn, num_samples=3000, batch_size=50, save_dir='./tmp'):
- # save lime weights and kmeans cluster labels
- precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, save_dir)
- # load precomputed results, compute normlime weights and save.
- fname_list = glob.glob(os.path.join(save_dir, f'lime_weights_s{num_samples}*.npy'))
- return compute_normlime_weights(fname_list, save_dir, num_samples)
- def save_one_lime_predict_and_kmean_labels(lime_all_weights, image_pred_labels, cluster_labels, save_path):
- lime_weights = {}
- for label in image_pred_labels:
- lime_weights[label] = lime_all_weights[label]
- for_normlime_weights = {
- 'lime_weights': lime_weights, # a dict: class_label: (seg_label, weight)
- 'cluster': cluster_labels # a list with segments as indices.
- }
- np.save(save_path, for_normlime_weights)
- def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, save_dir):
- kmeans_model = load_kmeans_model(h_pre_models_kmeans)
- for data_index, each_data_ in enumerate(list_data_):
- if isinstance(each_data_, str):
- save_path = f"lime_weights_s{num_samples}_{each_data_.split('/')[-1].split('.')[0]}.npy"
- save_path = os.path.join(save_dir, save_path)
- else:
- save_path = f"lime_weights_s{num_samples}_{data_index}.npy"
- save_path = os.path.join(save_dir, save_path)
- if os.path.exists(save_path):
- print(f'{save_path} exists, not computing this one.')
- continue
- print('processing', each_data_ if isinstance(each_data_, str) else data_index,
- f', {data_index}/{len(list_data_)}')
- image_show = read_image(each_data_)
- result = predict_fn(image_show)
- result = result[0] # only one image here.
- if abs(np.sum(result) - 1.0) > 1e-4:
- # softmax
- exp_result = np.exp(result)
- probability = exp_result / np.sum(exp_result)
- else:
- probability = result
- pred_label = np.argsort(probability)[::-1]
- # top_k = argmin(top_n) > threshold
- threshold = 0.05
- top_k = 0
- for l in pred_label:
- if probability[l] < threshold or top_k == 5:
- break
- top_k += 1
- if top_k == 0:
- top_k = 1
- pred_label = pred_label[:top_k]
- algo = lime_base.LimeImageInterpreter()
- interpreter = algo.interpret_instance(image_show[0], predict_fn, pred_label, 0,
- num_samples=num_samples, batch_size=batch_size)
- cluster_labels = kmeans_model.predict(
- get_feature_for_kmeans(compute_features_for_kmeans(image_show).transpose((1, 2, 0)), interpreter.segments)
- )
- save_one_lime_predict_and_kmean_labels(
- interpreter.local_weights, pred_label,
- cluster_labels,
- save_path
- )
- def compute_normlime_weights(a_list_lime_fnames, save_dir, lime_num_samples):
- normlime_weights_all_labels = {}
- for f in a_list_lime_fnames:
- try:
- lime_weights_and_cluster = np.load(f, allow_pickle=True).item()
- lime_weights = lime_weights_and_cluster['lime_weights']
- cluster = lime_weights_and_cluster['cluster']
- except:
- print('When loading precomputed LIME result, skipping', f)
- continue
- print('Loading precomputed LIME result,', f)
- pred_labels = lime_weights.keys()
- for y in pred_labels:
- normlime_weights = normlime_weights_all_labels.get(y, {})
- w_f_y = [abs(w[1]) for w in lime_weights[y]]
- w_f_y_l1norm = sum(w_f_y)
- for w in lime_weights[y]:
- seg_label = w[0]
- weight = w[1] * w[1] / w_f_y_l1norm
- a = normlime_weights.get(cluster[seg_label], [])
- a.append(weight)
- normlime_weights[cluster[seg_label]] = a
- normlime_weights_all_labels[y] = normlime_weights
- # compute normlime
- for y in normlime_weights_all_labels:
- normlime_weights = normlime_weights_all_labels.get(y, {})
- for k in normlime_weights:
- normlime_weights[k] = sum(normlime_weights[k]) / len(normlime_weights[k])
- # check normlime
- if len(normlime_weights_all_labels.keys()) < max(normlime_weights_all_labels.keys()) + 1:
- print(
- "\n"
- "Warning: !!! \n"
- f"There are at least {max(normlime_weights_all_labels.keys()) + 1} classes, "
- f"but the NormLIME has results of only {len(normlime_weights_all_labels.keys())} classes. \n"
- "It may have cause unstable results in the later computation"
- " but can be improved by computing more test samples."
- "\n"
- )
- n = 0
- f_out = f'normlime_weights_s{lime_num_samples}_samples_{len(a_list_lime_fnames)}-{n}.npy'
- while os.path.exists(
- os.path.join(save_dir, f_out)
- ):
- n += 1
- f_out = f'normlime_weights_s{lime_num_samples}_samples_{len(a_list_lime_fnames)}-{n}.npy'
- continue
- np.save(
- os.path.join(save_dir, f_out),
- normlime_weights_all_labels
- )
- return os.path.join(save_dir, f_out)
|