visualize.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. #Licensed under the Apache License, Version 2.0 (the "License");
  4. #you may not use this file except in compliance with the License.
  5. #You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. #Unless required by applicable law or agreed to in writing, software
  10. #distributed under the License is distributed on an "AS IS" BASIS,
  11. #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. #See the License for the specific language governing permissions and
  13. #limitations under the License.
  14. import os
  15. import cv2
  16. import copy
  17. import os.path as osp
  18. import numpy as np
  19. from .interpretation_predict import interpretation_predict
  20. from .core.interpretation import Interpretation
  21. from .core.normlime_base import precompute_normlime_weights
  22. def visualize(img_file,
  23. model,
  24. dataset=None,
  25. algo='lime',
  26. num_samples=3000,
  27. batch_size=50,
  28. save_dir='./'):
  29. """可解释性可视化。
  30. Args:
  31. img_file (str): 预测图像路径。
  32. model (paddlex.cv.models): paddlex中的模型。
  33. dataset (paddlex.datasets): 数据集读取器,默认为None。
  34. algo (str): 可解释性方式,当前可选'lime'和'normlime'。
  35. num_samples (int): 随机采样数量,默认为3000。
  36. batch_size (int): 预测数据batch大小,默认为50。
  37. save_dir (str): 可解释性可视化结果(保存为png格式文件)和中间文件存储路径。
  38. """
  39. assert model.model_type == 'classifier', \
  40. 'Now the interpretation visualize only be supported in classifier!'
  41. if model.status != 'Normal':
  42. raise Exception('The interpretation only can deal with the Normal model')
  43. model.arrange_transforms(
  44. transforms=model.test_transforms, mode='test')
  45. tmp_transforms = copy.deepcopy(model.test_transforms)
  46. tmp_transforms.transforms = tmp_transforms.transforms[:-2]
  47. img = tmp_transforms(img_file)[0]
  48. img = np.around(img).astype('uint8')
  49. img = np.expand_dims(img, axis=0)
  50. interpreter = None
  51. if algo == 'lime':
  52. interpreter = get_lime_interpreter(img, model, dataset, num_samples=num_samples, batch_size=batch_size)
  53. elif algo == 'normlime':
  54. if dataset is None:
  55. raise Exception('The dataset is None. Cannot implement this kind of interpretation')
  56. interpreter = get_normlime_interpreter(img, model, dataset,
  57. num_samples=num_samples, batch_size=batch_size,
  58. save_dir=save_dir)
  59. else:
  60. raise Exception('The {} interpretation method is not supported yet!'.format(algo))
  61. img_name = osp.splitext(osp.split(img_file)[-1])[0]
  62. interpreter.interpret(img, save_dir=save_dir)
  63. def get_lime_interpreter(img, model, dataset, num_samples=3000, batch_size=50):
  64. def predict_func(image):
  65. image = image.astype('float32')
  66. for i in range(image.shape[0]):
  67. image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR)
  68. tmp_transforms = copy.deepcopy(model.test_transforms.transforms)
  69. model.test_transforms.transforms = model.test_transforms.transforms[-2:]
  70. out = interpretation_predict(model, image)
  71. model.test_transforms.transforms = tmp_transforms
  72. return out[0]
  73. labels_name = None
  74. if dataset is not None:
  75. labels_name = dataset.labels
  76. interpreter = Interpretation('lime',
  77. predict_func,
  78. labels_name,
  79. num_samples=num_samples,
  80. batch_size=batch_size)
  81. return interpreter
  82. def get_normlime_interpreter(img, model, dataset, num_samples=3000, batch_size=50, save_dir='./'):
  83. def precompute_predict_func(image):
  84. image = image.astype('float32')
  85. tmp_transforms = copy.deepcopy(model.test_transforms.transforms)
  86. model.test_transforms.transforms = model.test_transforms.transforms[-2:]
  87. out = interpretation_predict(model, image)
  88. model.test_transforms.transforms = tmp_transforms
  89. return out[0]
  90. def predict_func(image):
  91. image = image.astype('float32')
  92. for i in range(image.shape[0]):
  93. image[i] = cv2.cvtColor(image[i], cv2.COLOR_RGB2BGR)
  94. tmp_transforms = copy.deepcopy(model.test_transforms.transforms)
  95. model.test_transforms.transforms = model.test_transforms.transforms[-2:]
  96. out = interpretation_predict(model, image)
  97. model.test_transforms.transforms = tmp_transforms
  98. return out[0]
  99. labels_name = None
  100. if dataset is not None:
  101. labels_name = dataset.labels
  102. root_path = os.environ['HOME']
  103. root_path = osp.join(root_path, '.paddlex')
  104. pre_models_path = osp.join(root_path, "pre_models")
  105. if not osp.exists(pre_models_path):
  106. os.makedirs(pre_models_path)
  107. # TODO
  108. # paddlex.utils.download_and_decompress(url, path=pre_models_path)
  109. npy_dir = precompute_for_normlime(precompute_predict_func,
  110. dataset,
  111. num_samples=num_samples,
  112. batch_size=batch_size,
  113. save_dir=save_dir)
  114. interpreter = Interpretation('normlime',
  115. predict_func,
  116. labels_name,
  117. num_samples=num_samples,
  118. batch_size=batch_size,
  119. normlime_weights=npy_dir)
  120. return interpreter
  121. def precompute_for_normlime(predict_func, dataset, num_samples=3000, batch_size=50, save_dir='./'):
  122. image_list = []
  123. for item in dataset.file_list:
  124. image_list.append(item[0])
  125. return precompute_normlime_weights(
  126. image_list,
  127. predict_func,
  128. num_samples=num_samples,
  129. batch_size=batch_size,
  130. save_dir=save_dir)