pipeline.py 3.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, Optional, Union, List
  15. import numpy as np
  16. from ...utils.pp_option import PaddlePredictorOption
  17. from ..base import BasePipeline
  18. # [TODO] 待更新models_new到models
  19. from ...models_new.object_detection.result import DetResult
  20. class OpenVocabularyDetectionPipeline(BasePipeline):
  21. """Open Vocabulary Detection Pipeline"""
  22. entities = "open_vocabulary_detection"
  23. def __init__(
  24. self,
  25. config: Dict,
  26. device: str = None,
  27. pp_option: PaddlePredictorOption = None,
  28. use_hpip: bool = False,
  29. ) -> None:
  30. """
  31. Initializes the class with given configurations and options.
  32. Args:
  33. config (Dict): Configuration dictionary containing model and other parameters.
  34. device (str): The device to run the prediction on. Default is None.
  35. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  36. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
  37. """
  38. super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
  39. open_vocabulary_detection_model_config = config.get("SubModules", {}).get(
  40. "OpenVocabularyDetection",
  41. {"model_config_error": "config error for doc_ori_classify_model!"},
  42. )
  43. self.open_vocabulary_detection_model = self.create_model(
  44. open_vocabulary_detection_model_config
  45. )
  46. self.thresholds = open_vocabulary_detection_model_config["thresholds"]
  47. def predict(
  48. self,
  49. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  50. prompt: str,
  51. thresholds: dict[str, float] | None = None,
  52. **kwargs
  53. ) -> DetResult:
  54. """Predicts open vocabulary detection results for the given input.
  55. Args:
  56. input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images.
  57. prompt (str): The text prompt used to describe the objects.
  58. thresholds (dict | None): Threshold values for different models. If provided, these will override any default threshold values set during initialization. Default is None.
  59. **kwargs: Additional keyword arguments that can be passed to the function.
  60. Returns:
  61. DetResult: The predicted open vocabulary detection results.
  62. """
  63. yield from self.open_vocabulary_detection_model(
  64. input, prompt=prompt, thresholds=thresholds
  65. )