| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.nn.initializer import Uniform
- import math
- __all__ = [
- "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201", "DenseNet264"
- ]
- class BNACConvLayer(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- filter_size,
- stride=1,
- pad=0,
- groups=1,
- act="relu",
- name=None):
- super(BNACConvLayer, self).__init__()
- self._batch_norm = BatchNorm(
- num_channels,
- act=act,
- param_attr=ParamAttr(name=name + '_bn_scale'),
- bias_attr=ParamAttr(name + '_bn_offset'),
- moving_mean_name=name + '_bn_mean',
- moving_variance_name=name + '_bn_variance')
- self._conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=pad,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weights"),
- bias_attr=False)
- def forward(self, input):
- y = self._batch_norm(input)
- y = self._conv(y)
- return y
- class DenseLayer(nn.Layer):
- def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
- super(DenseLayer, self).__init__()
- self.dropout = dropout
- self.bn_ac_func1 = BNACConvLayer(
- num_channels=num_channels,
- num_filters=bn_size * growth_rate,
- filter_size=1,
- pad=0,
- stride=1,
- name=name + "_x1")
- self.bn_ac_func2 = BNACConvLayer(
- num_channels=bn_size * growth_rate,
- num_filters=growth_rate,
- filter_size=3,
- pad=1,
- stride=1,
- name=name + "_x2")
- if dropout:
- self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer")
- def forward(self, input):
- conv = self.bn_ac_func1(input)
- conv = self.bn_ac_func2(conv)
- if self.dropout:
- conv = self.dropout_func(conv)
- conv = paddle.concat([input, conv], axis=1)
- return conv
- class DenseBlock(nn.Layer):
- def __init__(self,
- num_channels,
- num_layers,
- bn_size,
- growth_rate,
- dropout,
- name=None):
- super(DenseBlock, self).__init__()
- self.dropout = dropout
- self.dense_layer_func = []
- pre_channel = num_channels
- for layer in range(num_layers):
- self.dense_layer_func.append(
- self.add_sublayer(
- "{}_{}".format(name, layer + 1),
- DenseLayer(
- num_channels=pre_channel,
- growth_rate=growth_rate,
- bn_size=bn_size,
- dropout=dropout,
- name=name + '_' + str(layer + 1))))
- pre_channel = pre_channel + growth_rate
- def forward(self, input):
- conv = input
- for func in self.dense_layer_func:
- conv = func(conv)
- return conv
- class TransitionLayer(nn.Layer):
- def __init__(self, num_channels, num_output_features, name=None):
- super(TransitionLayer, self).__init__()
- self.conv_ac_func = BNACConvLayer(
- num_channels=num_channels,
- num_filters=num_output_features,
- filter_size=1,
- pad=0,
- stride=1,
- name=name)
- self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0)
- def forward(self, input):
- y = self.conv_ac_func(input)
- y = self.pool2d_avg(y)
- return y
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters,
- filter_size,
- stride=1,
- pad=0,
- groups=1,
- act="relu",
- name=None):
- super(ConvBNLayer, self).__init__()
- self._conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=pad,
- groups=groups,
- weight_attr=ParamAttr(name=name + "_weights"),
- bias_attr=False)
- self._batch_norm = BatchNorm(
- num_filters,
- act=act,
- param_attr=ParamAttr(name=name + '_bn_scale'),
- bias_attr=ParamAttr(name + '_bn_offset'),
- moving_mean_name=name + '_bn_mean',
- moving_variance_name=name + '_bn_variance')
- def forward(self, input):
- y = self._conv(input)
- y = self._batch_norm(y)
- return y
- class DenseNet(nn.Layer):
- def __init__(self, layers=60, bn_size=4, dropout=0, class_dim=1000):
- super(DenseNet, self).__init__()
- supported_layers = [121, 161, 169, 201, 264]
- assert layers in supported_layers, \
- "supported layers are {} but input layer is {}".format(
- supported_layers, layers)
- densenet_spec = {
- 121: (64, 32, [6, 12, 24, 16]),
- 161: (96, 48, [6, 12, 36, 24]),
- 169: (64, 32, [6, 12, 32, 32]),
- 201: (64, 32, [6, 12, 48, 32]),
- 264: (64, 32, [6, 12, 64, 48])
- }
- num_init_features, growth_rate, block_config = densenet_spec[layers]
- self.conv1_func = ConvBNLayer(
- num_channels=3,
- num_filters=num_init_features,
- filter_size=7,
- stride=2,
- pad=3,
- act='relu',
- name="conv1")
- self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
- self.block_config = block_config
- self.dense_block_func_list = []
- self.transition_func_list = []
- pre_num_channels = num_init_features
- num_features = num_init_features
- for i, num_layers in enumerate(block_config):
- self.dense_block_func_list.append(
- self.add_sublayer(
- "db_conv_{}".format(i + 2),
- DenseBlock(
- num_channels=pre_num_channels,
- num_layers=num_layers,
- bn_size=bn_size,
- growth_rate=growth_rate,
- dropout=dropout,
- name='conv' + str(i + 2))))
- num_features = num_features + num_layers * growth_rate
- pre_num_channels = num_features
- if i != len(block_config) - 1:
- self.transition_func_list.append(
- self.add_sublayer(
- "tr_conv{}_blk".format(i + 2),
- TransitionLayer(
- num_channels=pre_num_channels,
- num_output_features=num_features // 2,
- name='conv' + str(i + 2) + "_blk")))
- pre_num_channels = num_features // 2
- num_features = num_features // 2
- self.batch_norm = BatchNorm(
- num_features,
- act="relu",
- param_attr=ParamAttr(name='conv5_blk_bn_scale'),
- bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
- moving_mean_name='conv5_blk_bn_mean',
- moving_variance_name='conv5_blk_bn_variance')
- self.pool2d_avg = AdaptiveAvgPool2D(1)
- stdv = 1.0 / math.sqrt(num_features * 1.0)
- self.out = Linear(
- num_features,
- class_dim,
- weight_attr=ParamAttr(
- initializer=Uniform(-stdv, stdv), name="fc_weights"),
- bias_attr=ParamAttr(name="fc_offset"))
- def forward(self, input):
- conv = self.conv1_func(input)
- conv = self.pool2d_max(conv)
- for i, num_layers in enumerate(self.block_config):
- conv = self.dense_block_func_list[i](conv)
- if i != len(self.block_config) - 1:
- conv = self.transition_func_list[i](conv)
- conv = self.batch_norm(conv)
- y = self.pool2d_avg(conv)
- y = paddle.flatten(y, start_axis=1, stop_axis=-1)
- y = self.out(y)
- return y
- def DenseNet121(**args):
- model = DenseNet(layers=121, **args)
- return model
- def DenseNet161(**args):
- model = DenseNet(layers=161, **args)
- return model
- def DenseNet169(**args):
- model = DenseNet(layers=169, **args)
- return model
- def DenseNet201(**args):
- model = DenseNet(layers=201, **args)
- return model
- def DenseNet264(**args):
- model = DenseNet(layers=264, **args)
- return model
|