mobilenet_v1.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import absolute_import
  15. from __future__ import division
  16. from __future__ import print_function
  17. import paddle
  18. from paddle import ParamAttr
  19. import paddle.nn as nn
  20. from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
  21. from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
  22. from paddle.nn.initializer import KaimingNormal
  23. __all__ = ["MobileNetV1"]
  24. class ConvBNLayer(nn.Layer):
  25. def __init__(self,
  26. num_channels,
  27. filter_size,
  28. num_filters,
  29. stride,
  30. padding,
  31. channels=None,
  32. num_groups=1,
  33. act='relu',
  34. name=None):
  35. super(ConvBNLayer, self).__init__()
  36. self._conv = Conv2D(
  37. in_channels=num_channels,
  38. out_channels=num_filters,
  39. kernel_size=filter_size,
  40. stride=stride,
  41. padding=padding,
  42. groups=num_groups,
  43. weight_attr=ParamAttr(
  44. initializer=KaimingNormal(), name=name + "_weights"),
  45. bias_attr=False)
  46. self._batch_norm = BatchNorm(
  47. num_filters,
  48. act=act,
  49. param_attr=ParamAttr(name + "_bn_scale"),
  50. bias_attr=ParamAttr(name + "_bn_offset"),
  51. moving_mean_name=name + "_bn_mean",
  52. moving_variance_name=name + "_bn_variance")
  53. def forward(self, inputs):
  54. y = self._conv(inputs)
  55. y = self._batch_norm(y)
  56. return y
  57. class DepthwiseSeparable(nn.Layer):
  58. def __init__(self,
  59. num_channels,
  60. num_filters1,
  61. num_filters2,
  62. num_groups,
  63. stride,
  64. scale,
  65. name=None):
  66. super(DepthwiseSeparable, self).__init__()
  67. self._depthwise_conv = ConvBNLayer(
  68. num_channels=num_channels,
  69. num_filters=int(num_filters1 * scale),
  70. filter_size=3,
  71. stride=stride,
  72. padding=1,
  73. num_groups=int(num_groups * scale),
  74. name=name + "_dw")
  75. self._pointwise_conv = ConvBNLayer(
  76. num_channels=int(num_filters1 * scale),
  77. filter_size=1,
  78. num_filters=int(num_filters2 * scale),
  79. stride=1,
  80. padding=0,
  81. name=name + "_sep")
  82. def forward(self, inputs):
  83. y = self._depthwise_conv(inputs)
  84. y = self._pointwise_conv(y)
  85. return y
  86. class MobileNet(nn.Layer):
  87. def __init__(self, scale=1.0, class_dim=1000):
  88. super(MobileNet, self).__init__()
  89. self.scale = scale
  90. self.block_list = []
  91. self.conv1 = ConvBNLayer(
  92. num_channels=3,
  93. filter_size=3,
  94. channels=3,
  95. num_filters=int(32 * scale),
  96. stride=2,
  97. padding=1,
  98. name="conv1")
  99. conv2_1 = self.add_sublayer(
  100. "conv2_1",
  101. sublayer=DepthwiseSeparable(
  102. num_channels=int(32 * scale),
  103. num_filters1=32,
  104. num_filters2=64,
  105. num_groups=32,
  106. stride=1,
  107. scale=scale,
  108. name="conv2_1"))
  109. self.block_list.append(conv2_1)
  110. conv2_2 = self.add_sublayer(
  111. "conv2_2",
  112. sublayer=DepthwiseSeparable(
  113. num_channels=int(64 * scale),
  114. num_filters1=64,
  115. num_filters2=128,
  116. num_groups=64,
  117. stride=2,
  118. scale=scale,
  119. name="conv2_2"))
  120. self.block_list.append(conv2_2)
  121. conv3_1 = self.add_sublayer(
  122. "conv3_1",
  123. sublayer=DepthwiseSeparable(
  124. num_channels=int(128 * scale),
  125. num_filters1=128,
  126. num_filters2=128,
  127. num_groups=128,
  128. stride=1,
  129. scale=scale,
  130. name="conv3_1"))
  131. self.block_list.append(conv3_1)
  132. conv3_2 = self.add_sublayer(
  133. "conv3_2",
  134. sublayer=DepthwiseSeparable(
  135. num_channels=int(128 * scale),
  136. num_filters1=128,
  137. num_filters2=256,
  138. num_groups=128,
  139. stride=2,
  140. scale=scale,
  141. name="conv3_2"))
  142. self.block_list.append(conv3_2)
  143. conv4_1 = self.add_sublayer(
  144. "conv4_1",
  145. sublayer=DepthwiseSeparable(
  146. num_channels=int(256 * scale),
  147. num_filters1=256,
  148. num_filters2=256,
  149. num_groups=256,
  150. stride=1,
  151. scale=scale,
  152. name="conv4_1"))
  153. self.block_list.append(conv4_1)
  154. conv4_2 = self.add_sublayer(
  155. "conv4_2",
  156. sublayer=DepthwiseSeparable(
  157. num_channels=int(256 * scale),
  158. num_filters1=256,
  159. num_filters2=512,
  160. num_groups=256,
  161. stride=2,
  162. scale=scale,
  163. name="conv4_2"))
  164. self.block_list.append(conv4_2)
  165. for i in range(5):
  166. conv5 = self.add_sublayer(
  167. "conv5_" + str(i + 1),
  168. sublayer=DepthwiseSeparable(
  169. num_channels=int(512 * scale),
  170. num_filters1=512,
  171. num_filters2=512,
  172. num_groups=512,
  173. stride=1,
  174. scale=scale,
  175. name="conv5_" + str(i + 1)))
  176. self.block_list.append(conv5)
  177. conv5_6 = self.add_sublayer(
  178. "conv5_6",
  179. sublayer=DepthwiseSeparable(
  180. num_channels=int(512 * scale),
  181. num_filters1=512,
  182. num_filters2=1024,
  183. num_groups=512,
  184. stride=2,
  185. scale=scale,
  186. name="conv5_6"))
  187. self.block_list.append(conv5_6)
  188. conv6 = self.add_sublayer(
  189. "conv6",
  190. sublayer=DepthwiseSeparable(
  191. num_channels=int(1024 * scale),
  192. num_filters1=1024,
  193. num_filters2=1024,
  194. num_groups=1024,
  195. stride=1,
  196. scale=scale,
  197. name="conv6"))
  198. self.block_list.append(conv6)
  199. self.pool2d_avg = AdaptiveAvgPool2D(1)
  200. self.out = Linear(
  201. int(1024 * scale),
  202. class_dim,
  203. weight_attr=ParamAttr(
  204. initializer=KaimingNormal(), name="fc7_weights"),
  205. bias_attr=ParamAttr(name="fc7_offset"))
  206. def forward(self, inputs):
  207. y = self.conv1(inputs)
  208. for block in self.block_list:
  209. y = block(y)
  210. y = self.pool2d_avg(y)
  211. y = paddle.flatten(y, start_axis=1, stop_axis=-1)
  212. y = self.out(y)
  213. return y
  214. def MobileNetV1(scale=1.0, **args):
  215. model = MobileNet(scale=scale, **args)
  216. return model