| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle
- from paddle import ParamAttr
- import paddle.nn as nn
- from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
- from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
- from paddle.nn.initializer import KaimingNormal
- __all__ = ["MobileNetV1"]
- class ConvBNLayer(nn.Layer):
- def __init__(self,
- num_channels,
- filter_size,
- num_filters,
- stride,
- padding,
- channels=None,
- num_groups=1,
- act='relu',
- name=None):
- super(ConvBNLayer, self).__init__()
- self._conv = Conv2D(
- in_channels=num_channels,
- out_channels=num_filters,
- kernel_size=filter_size,
- stride=stride,
- padding=padding,
- groups=num_groups,
- weight_attr=ParamAttr(
- initializer=KaimingNormal(), name=name + "_weights"),
- bias_attr=False)
- self._batch_norm = BatchNorm(
- num_filters,
- act=act,
- param_attr=ParamAttr(name + "_bn_scale"),
- bias_attr=ParamAttr(name + "_bn_offset"),
- moving_mean_name=name + "_bn_mean",
- moving_variance_name=name + "_bn_variance")
- def forward(self, inputs):
- y = self._conv(inputs)
- y = self._batch_norm(y)
- return y
- class DepthwiseSeparable(nn.Layer):
- def __init__(self,
- num_channels,
- num_filters1,
- num_filters2,
- num_groups,
- stride,
- scale,
- name=None):
- super(DepthwiseSeparable, self).__init__()
- self._depthwise_conv = ConvBNLayer(
- num_channels=num_channels,
- num_filters=int(num_filters1 * scale),
- filter_size=3,
- stride=stride,
- padding=1,
- num_groups=int(num_groups * scale),
- name=name + "_dw")
- self._pointwise_conv = ConvBNLayer(
- num_channels=int(num_filters1 * scale),
- filter_size=1,
- num_filters=int(num_filters2 * scale),
- stride=1,
- padding=0,
- name=name + "_sep")
- def forward(self, inputs):
- y = self._depthwise_conv(inputs)
- y = self._pointwise_conv(y)
- return y
- class MobileNet(nn.Layer):
- def __init__(self, scale=1.0, class_dim=1000):
- super(MobileNet, self).__init__()
- self.scale = scale
- self.block_list = []
- self.conv1 = ConvBNLayer(
- num_channels=3,
- filter_size=3,
- channels=3,
- num_filters=int(32 * scale),
- stride=2,
- padding=1,
- name="conv1")
- conv2_1 = self.add_sublayer(
- "conv2_1",
- sublayer=DepthwiseSeparable(
- num_channels=int(32 * scale),
- num_filters1=32,
- num_filters2=64,
- num_groups=32,
- stride=1,
- scale=scale,
- name="conv2_1"))
- self.block_list.append(conv2_1)
- conv2_2 = self.add_sublayer(
- "conv2_2",
- sublayer=DepthwiseSeparable(
- num_channels=int(64 * scale),
- num_filters1=64,
- num_filters2=128,
- num_groups=64,
- stride=2,
- scale=scale,
- name="conv2_2"))
- self.block_list.append(conv2_2)
- conv3_1 = self.add_sublayer(
- "conv3_1",
- sublayer=DepthwiseSeparable(
- num_channels=int(128 * scale),
- num_filters1=128,
- num_filters2=128,
- num_groups=128,
- stride=1,
- scale=scale,
- name="conv3_1"))
- self.block_list.append(conv3_1)
- conv3_2 = self.add_sublayer(
- "conv3_2",
- sublayer=DepthwiseSeparable(
- num_channels=int(128 * scale),
- num_filters1=128,
- num_filters2=256,
- num_groups=128,
- stride=2,
- scale=scale,
- name="conv3_2"))
- self.block_list.append(conv3_2)
- conv4_1 = self.add_sublayer(
- "conv4_1",
- sublayer=DepthwiseSeparable(
- num_channels=int(256 * scale),
- num_filters1=256,
- num_filters2=256,
- num_groups=256,
- stride=1,
- scale=scale,
- name="conv4_1"))
- self.block_list.append(conv4_1)
- conv4_2 = self.add_sublayer(
- "conv4_2",
- sublayer=DepthwiseSeparable(
- num_channels=int(256 * scale),
- num_filters1=256,
- num_filters2=512,
- num_groups=256,
- stride=2,
- scale=scale,
- name="conv4_2"))
- self.block_list.append(conv4_2)
- for i in range(5):
- conv5 = self.add_sublayer(
- "conv5_" + str(i + 1),
- sublayer=DepthwiseSeparable(
- num_channels=int(512 * scale),
- num_filters1=512,
- num_filters2=512,
- num_groups=512,
- stride=1,
- scale=scale,
- name="conv5_" + str(i + 1)))
- self.block_list.append(conv5)
- conv5_6 = self.add_sublayer(
- "conv5_6",
- sublayer=DepthwiseSeparable(
- num_channels=int(512 * scale),
- num_filters1=512,
- num_filters2=1024,
- num_groups=512,
- stride=2,
- scale=scale,
- name="conv5_6"))
- self.block_list.append(conv5_6)
- conv6 = self.add_sublayer(
- "conv6",
- sublayer=DepthwiseSeparable(
- num_channels=int(1024 * scale),
- num_filters1=1024,
- num_filters2=1024,
- num_groups=1024,
- stride=1,
- scale=scale,
- name="conv6"))
- self.block_list.append(conv6)
- self.pool2d_avg = AdaptiveAvgPool2D(1)
- self.out = Linear(
- int(1024 * scale),
- class_dim,
- weight_attr=ParamAttr(
- initializer=KaimingNormal(), name="fc7_weights"),
- bias_attr=ParamAttr(name="fc7_offset"))
- def forward(self, inputs):
- y = self.conv1(inputs)
- for block in self.block_list:
- y = block(y)
- y = self.pool2d_avg(y)
- y = paddle.flatten(y, start_axis=1, stop_axis=-1)
- y = self.out(y)
- return y
- def MobileNetV1(scale=1.0, **args):
- model = MobileNet(scale=scale, **args)
- return model
|