PaddleX incorporates multiple pipelines, each containing several modules, and each module includes various models. You can choose which models to use based on the benchmark data below. If you prioritize model accuracy, select models with higher accuracy. If you prioritize inference speed, choose models with faster inference. If you prioritize model storage size, select models with smaller storage sizes.
| Model Name | Top-1 Acc (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| CLIP_vit_base_patch16_224 | 85.36 | 13.1957 | 285.493 | 306.5 M | CLIP_vit_base_patch16_224.yaml |
| CLIP_vit_large_patch14_224 | 88.1 | 51.1284 | 1131.28 | 1.04 G | CLIP_vit_large_patch14_224.yaml |
| ConvNeXt_base_224 | 83.84 | 12.8473 | 1513.87 | 313.9 M | ConvNeXt_base_224.yaml |
| ConvNeXt_base_384 | 84.90 | 31.7607 | 3967.05 | 313.9 M | ConvNeXt_base_384.yaml |
| ConvNeXt_large_224 | 84.26 | 26.8103 | 2463.56 | 700.7 M | ConvNeXt_large_224.yaml |
| ConvNeXt_large_384 | 85.27 | 66.4058 | 6598.92 | 700.7 M | ConvNeXt_large_384.yaml |
| ConvNeXt_small | 83.13 | 9.74075 | 1127.6 | 178.0 M | ConvNeXt_small.yaml |
| ConvNeXt_tiny | 82.03 | 5.48923 | 672.559 | 101.4 M | ConvNeXt_tiny.yaml |
| FasterNet-L | 83.5 | 23.4415 | - | 357.1 M | FasterNet-L.yaml |
| FasterNet-M | 83.0 | 21.8936 | - | 204.6 M | FasterNet-M.yaml |
| FasterNet-S | 81.3 | 13.0409 | - | 119.3 M | FasterNet-S.yaml |
| FasterNet-T0 | 71.9 | 12.2432 | - | 15.1 M | FasterNet-T0.yaml |
| FasterNet-T1 | 75.9 | 11.3562 | - | 29.2 M | FasterNet-T1.yaml |
| FasterNet-T2 | 79.1 | 10.703 | - | 57.4 M | FasterNet-T2.yaml |
| MobileNetV1_x0_5 | 63.5 | 1.86754 | 7.48297 | 4.8 M | MobileNetV1_x0_5.yaml |
| MobileNetV1_x0_25 | 51.4 | 1.83478 | 4.83674 | 1.8 M | MobileNetV1_x0_25.yaml |
| MobileNetV1_x0_75 | 68.8 | 2.57903 | 10.6343 | 9.3 M | MobileNetV1_x0_75.yaml |
| MobileNetV1_x1_0 | 71.0 | 2.78781 | 13.98 | 15.2 M | MobileNetV1_x1_0.yaml |
| MobileNetV2_x0_5 | 65.0 | 4.94234 | 11.1629 | 7.1 M | MobileNetV2_x0_5.yaml |
| MobileNetV2_x0_25 | 53.2 | 4.50856 | 9.40991 | 5.5 M | MobileNetV2_x0_25.yaml |
| MobileNetV2_x1_0 | 72.2 | 6.12159 | 16.0442 | 12.6 M | MobileNetV2_x1_0.yaml |
| MobileNetV2_x1_5 | 74.1 | 6.28385 | 22.5129 | 25.0 M | MobileNetV2_x1_5.yaml |
| MobileNetV2_x2_0 | 75.2 | 6.12888 | 30.8612 | 41.2 M | MobileNetV2_x2_0.yaml |
| MobileNetV3_large_x0_5 | 69.2 | 6.31302 | 14.5588 | 9.6 M | MobileNetV3_large_x0_5.yaml |
| MobileNetV3_large_x0_35 | 64.3 | 5.76207 | 13.9041 | 7.5 M | MobileNetV3_large_x0_35.yaml |
| MobileNetV3_large_x0_75 | 73.1 | 8.41737 | 16.9506 | 14.0 M | MobileNetV3_large_x0_75.yaml |
| MobileNetV3_large_x1_0 | 75.3 | 8.64112 | 19.1614 | 19.5 M | MobileNetV3_large_x1_0.yaml |
| MobileNetV3_large_x1_25 | 76.4 | 8.73358 | 22.1296 | 26.5 M | MobileNetV3_large_x1_25.yaml |
| MobileNetV3_small_x0_5 | 59.2 | 5.16721 | 11.2688 | 6.8 M | MobileNetV3_small_x0_5.yaml |
| MobileNetV3_small_x0_35 | 53.0 | 5.22053 | 11.0055 | 6.0 M | MobileNetV3_small_x0_35.yaml |
| MobileNetV3_small_x0_75 | 66.0 | 5.39831 | 12.8313 | 8.5 M | MobileNetV3_small_x0_75.yaml |
| MobileNetV3_small_x1_0 | 68.2 | 6.00993 | 12.9598 | 10.5 M | MobileNetV3_small_x1_0.yaml |
| MobileNetV3_small_x1_25 | 70.7 | 6.9589 | 14.3995 | 13.0 M | MobileNetV3_small_x1_25.yaml |
| MobileNetV4_conv_large | 83.4 | 12.5485 | 51.6453 | 125.2 M | MobileNetV4_conv_large.yaml |
| MobileNetV4_conv_medium | 79.9 | 9.65509 | 26.6157 | 37.6 M | MobileNetV4_conv_medium.yaml |
| MobileNetV4_conv_small | 74.6 | 5.24172 | 11.0893 | 14.7 M | MobileNetV4_conv_small.yaml |
| MobileNetV4_hybrid_large | 83.8 | 20.0726 | 213.769 | 145.1 M | MobileNetV4_hybrid_large.yaml |
| MobileNetV4_hybrid_medium | 80.5 | 19.7543 | 62.2624 | 42.9 M | MobileNetV4_hybrid_medium.yaml |
| PP-HGNet_base | 85.0 | 14.2969 | 327.114 | 249.4 M | PP-HGNet_base.yaml |
| PP-HGNet_small | 81.51 | 5.50661 | 119.041 | 86.5 M | PP-HGNet_small.yaml |
| PP-HGNet_tiny | 79.83 | 5.22006 | 69.396 | 52.4 M | PP-HGNet_tiny.yaml |
| PP-HGNetV2-B0 | 77.77 | 6.53694 | 23.352 | 21.4 M | PP-HGNetV2-B0.yaml |
| PP-HGNetV2-B1 | 79.18 | 6.56034 | 27.3099 | 22.6 M | PP-HGNetV2-B1.yaml |
| PP-HGNetV2-B2 | 81.74 | 9.60494 | 43.1219 | 39.9 M | PP-HGNetV2-B2.yaml |
| PP-HGNetV2-B3 | 82.98 | 11.0042 | 55.1367 | 57.9 M | PP-HGNetV2-B3.yaml |
| PP-HGNetV2-B4 | 83.57 | 9.66407 | 54.2462 | 70.4 M | PP-HGNetV2-B4.yaml |
| PP-HGNetV2-B5 | 84.75 | 15.7091 | 115.926 | 140.8 M | PP-HGNetV2-B5.yaml |
| PP-HGNetV2-B6 | 86.30 | 21.226 | 255.279 | 268.4 M | PP-HGNetV2-B6.yaml |
| PP-LCNet_x0_5 | 63.14 | 3.67722 | 6.66857 | 6.7 M | PP-LCNet_x0_5.yaml |
| PP-LCNet_x0_25 | 51.86 | 2.65341 | 5.81357 | 5.5 M | PP-LCNet_x0_25.yaml |
| PP-LCNet_x0_35 | 58.09 | 2.7212 | 6.28944 | 5.9 M | PP-LCNet_x0_35.yaml |
| PP-LCNet_x0_75 | 68.18 | 3.91032 | 8.06953 | 8.4 M | PP-LCNet_x0_75.yaml |
| PP-LCNet_x1_0 | 71.32 | 3.84845 | 9.23735 | 10.5 M | PP-LCNet_x1_0.yaml |
| PP-LCNet_x1_5 | 73.71 | 3.97666 | 12.3457 | 16.0 M | PP-LCNet_x1_5.yaml |
| PP-LCNet_x2_0 | 75.18 | 4.07556 | 16.2752 | 23.2 M | PP-LCNet_x2_0.yaml |
| PP-LCNet_x2_5 | 76.60 | 4.06028 | 21.5063 | 32.1 M | PP-LCNet_x2_5.yaml |
| PP-LCNetV2_base | 77.05 | 5.23428 | 19.6005 | 23.7 M | PP-LCNetV2_base.yaml |
| PP-LCNetV2_large | 78.51 | 6.78335 | 30.4378 | 37.3 M | PP-LCNetV2_large.yaml |
| PP-LCNetV2_small | 73.97 | 3.89762 | 13.0273 | 14.6 M | PP-LCNetV2_small.yaml |
| ResNet18_vd | 72.3 | 3.53048 | 31.3014 | 41.5 M | ResNet18_vd.yaml |
| ResNet18 | 71.0 | 2.4868 | 27.4601 | 41.5 M | ResNet18.yaml |
| ResNet34_vd | 76.0 | 5.60675 | 56.0653 | 77.3 M | ResNet34_vd.yaml |
| ResNet34 | 74.6 | 4.16902 | 51.925 | 77.3 M | ResNet34.yaml |
| ResNet50_vd | 79.1 | 10.1885 | 68.446 | 90.8 M | ResNet50_vd.yaml |
| ResNet50 | 76.5 | 9.62383 | 64.8135 | 90.8 M | ResNet50.yaml |
| ResNet101_vd | 80.2 | 20.0563 | 124.85 | 158.4 M | ResNet101_vd.yaml |
| ResNet101 | 77.6 | 19.2297 | 121.006 | 158.7 M | ResNet101.yaml |
| ResNet152_vd | 80.6 | 29.6439 | 181.678 | 214.3 M | ResNet152_vd.yaml |
| ResNet152 | 78.3 | 30.0461 | 177.707 | 214.2 M | ResNet152.yaml |
| ResNet200_vd | 80.9 | 39.1628 | 235.185 | 266.0 M | ResNet200_vd.yaml |
| StarNet-S1 | 73.6 | 9.895 | 23.0465 | 11.2 M | StarNet-S1.yaml |
| StarNet-S2 | 74.8 | 7.91279 | 21.9571 | 14.3 M | StarNet-S2.yaml |
| StarNet-S3 | 77.0 | 10.7531 | 30.7656 | 22.2 M | StarNet-S3.yaml |
| StarNet-S4 | 79.0 | 15.2868 | 43.2497 | 28.9 M | StarNet-S4.yaml |
| SwinTransformer_base_patch4_window7_224 | 83.37 | 16.9848 | 383.83 | 310.5 M | SwinTransformer_base_patch4_window7_224.yaml |
| SwinTransformer_base_patch4_window12_384 | 84.17 | 37.2855 | 1178.63 | 311.4 M | SwinTransformer_base_patch4_window12_384.yaml |
| SwinTransformer_large_patch4_window7_224 | 86.19 | 27.5498 | 689.729 | 694.8 M | SwinTransformer_large_patch4_window7_224.yaml |
| SwinTransformer_large_patch4_window12_384 | 87.06 | 74.1768 | 2105.22 | 696.1 M | SwinTransformer_large_patch4_window12_384.yaml |
| SwinTransformer_small_patch4_window7_224 | 83.21 | 16.3982 | 285.56 | 175.6 M | SwinTransformer_small_patch4_window7_224.yaml |
| SwinTransformer_tiny_patch4_window7_224 | 81.10 | 8.54846 | 156.306 | 100.1 M | SwinTransformer_tiny_patch4_window7_224.yaml |
| Model Name | mAP (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| CLIP_vit_base_patch16_448_ML | 89.15 | - | - | 325.6 M | CLIP_vit_base_patch16_448_ML.yaml |
| PP-HGNetV2-B0_ML | 80.98 | - | - | 39.6 M | PP-HGNetV2-B0_ML.yaml |
| PP-HGNetV2-B4_ML | 87.96 | - | - | 88.5 M | PP-HGNetV2-B4_ML.yaml |
| PP-HGNetV2-B6_ML | 91.25 | - | - | 286.5 M | PP-HGNetV2-B6_ML.yaml |
| PP-LCNet_x1_0_ML | 77.96 | - | - | 29.4 M | PP-LCNet_x1_0_ML.yaml |
| ResNet50_ML | 83.50 | - | - | 108.9 M | ResNet50_ML.yaml |
| Model Name | mA (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-LCNet_x1_0_pedestrian_attribute | 92.2 | 3.84845 | 9.23735 | 6.7 M | PP-LCNet_x1_0_pedestrian_attribute.yaml |
| Model Name | mA (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-LCNet_x1_0_vehicle_attribute | 91.7 | 3.84845 | 9.23735 | 6.7 M | PP-LCNet_x1_0_vehicle_attribute.yaml |
| Model Name | recall@1 (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-ShiTuV2_rec | 84.2 | 5.23428 | 19.6005 | 16.3 M | PP-ShiTuV2_rec.yaml |
| PP-ShiTuV2_rec_CLIP_vit_base | 88.69 | 13.1957 | 285.493 | 306.6 M | PP-ShiTuV2_rec_CLIP_vit_base.yaml |
| PP-ShiTuV2_rec_CLIP_vit_large | 91.03 | 51.1284 | 1131.28 | 1.05 G | PP-ShiTuV2_rec_CLIP_vit_large.yaml |
| Model Name | Top-1 Acc (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-LCNet_x1_0_doc_ori | 99.26 | 3.84845 | 9.23735 | 7.1 M | PP-LCNet_x1_0_doc_ori.yaml |
| Model Name | Output Feature Dimension | Acc (%) AgeDB-30/CFP-FP/LFW |
GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size (M) | YAML File |
|---|---|---|---|---|---|---|
| MobileFaceNet | 128 | 96.28/96.71/99.58 | 4.1 | MobileFaceNet.yaml | ||
| ResNet50_face | 512 | 98.12/98.56/99.77 | 87.2 | ResNet50_face.yaml |
| Model Name | mAP (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-ShiTuV2_det | 41.5 | 33.7426 | 537.003 | 27.6 M | PP-ShiTuV2_det.yaml |
| Model Name | mAP (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| Cascade-FasterRCNN-ResNet50-FPN | 41.1 | - | - | 245.4 M | Cascade-FasterRCNN-ResNet50-FPN.yaml |
| Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN | 45.0 | - | - | 246.2 M | Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml |
| CenterNet-DLA-34 | 37.6 | - | - | 75.4 M | CenterNet-DLA-34.yaml |
| CenterNet-ResNet50 | 38.9 | - | - | 319.7 M | CenterNet-ResNet50.yaml |
| DETR-R50 | 42.3 | 59.2132 | 5334.52 | 159.3 M | DETR-R50.yaml |
| FasterRCNN-ResNet34-FPN | 37.8 | - | - | 137.5 M | FasterRCNN-ResNet34-FPN.yaml |
| FasterRCNN-ResNet50-FPN | 38.4 | - | - | 148.1 M | FasterRCNN-ResNet50-FPN.yaml |
| FasterRCNN-ResNet50-vd-FPN | 39.5 | - | - | 148.1 M | FasterRCNN-ResNet50-vd-FPN.yaml |
| FasterRCNN-ResNet50-vd-SSLDv2-FPN | 41.4 | - | - | 148.1 M | FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml |
| FasterRCNN-ResNet50 | 36.7 | - | - | 120.2 M | FasterRCNN-ResNet50.yaml |
| FasterRCNN-ResNet101-FPN | 41.4 | - | - | 216.3 M | FasterRCNN-ResNet101-FPN.yaml |
| FasterRCNN-ResNet101 | 39.0 | - | - | 188.1 M | FasterRCNN-ResNet101.yaml |
| FasterRCNN-ResNeXt101-vd-FPN | 43.4 | - | - | 360.6 M | FasterRCNN-ResNeXt101-vd-FPN.yaml |
| FasterRCNN-Swin-Tiny-FPN | 42.6 | - | - | 159.8 M | FasterRCNN-Swin-Tiny-FPN.yaml |
| FCOS-ResNet50 | 39.6 | 103.367 | 3424.91 | 124.2 M | FCOS-ResNet50.yaml |
| PicoDet-L | 42.6 | 16.6715 | 169.904 | 20.9 M | PicoDet-L.yaml |
| PicoDet-M | 37.5 | 16.2311 | 71.7257 | 16.8 M | PicoDet-M.yaml |
| PicoDet-S | 29.1 | 14.097 | 37.6563 | 4.4 M | PicoDet-S.yaml |
| PicoDet-XS | 26.2 | 13.8102 | 48.3139 | 5.7M | PicoDet-XS.yaml |
| PP-YOLOE_plus-L | 52.9 | 33.5644 | 814.825 | 185.3 M | PP-YOLOE_plus-L.yaml |
| PP-YOLOE_plus-M | 49.8 | 19.843 | 449.261 | 83.2 M | PP-YOLOE_plus-M.yaml |
| PP-YOLOE_plus-S | 43.7 | 16.8884 | 223.059 | 28.3 M | PP-YOLOE_plus-S.yaml |
| PP-YOLOE_plus-X | 54.7 | 57.8995 | 1439.93 | 349.4 M | PP-YOLOE_plus-X.yaml |
| RT-DETR-H | 56.3 | 114.814 | 3933.39 | 435.8 M | RT-DETR-H.yaml |
| RT-DETR-L | 53.0 | 34.5252 | 1454.27 | 113.7 M | RT-DETR-L.yaml |
| RT-DETR-R18 | 46.5 | 19.89 | 784.824 | 70.7 M | RT-DETR-R18.yaml |
| RT-DETR-R50 | 53.1 | 41.9327 | 1625.95 | 149.1 M | RT-DETR-R50.yaml |
| RT-DETR-X | 54.8 | 61.8042 | 2246.64 | 232.9 M | RT-DETR-X.yaml |
| YOLOv3-DarkNet53 | 39.1 | 40.1055 | 883.041 | 219.7 M | YOLOv3-DarkNet53.yaml |
| YOLOv3-MobileNetV3 | 31.4 | 18.6692 | 267.214 | 83.8 M | YOLOv3-MobileNetV3.yaml |
| YOLOv3-ResNet50_vd_DCN | 40.6 | 31.6276 | 856.047 | 163.0 M | YOLOv3-ResNet50_vd_DCN.yaml |
| YOLOX-L | 50.1 | 185.691 | 1250.58 | 192.5 M | YOLOX-L.yaml |
| YOLOX-M | 46.9 | 123.324 | 688.071 | 90.0 M | YOLOX-M.yaml |
| YOLOX-N | 26.1 | 79.1665 | 155.59 | 3.4 M | YOLOX-N.yaml |
| YOLOX-S | 40.4 | 184.828 | 474.446 | 32.0 M | YOLOX-S.yaml |
| YOLOX-T | 32.9 | 102.748 | 212.52 | 18.1 M | YOLOX-T.yaml |
| YOLOX-X | 51.8 | 227.361 | 2067.84 | 351.5 M | YOLOX-X.yaml |
| Model Name | mAP (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-YOLOE_plus_SOD-S | 25.1 | 65.4608 | 324.37 | 77.3 M | PP-YOLOE_plus_SOD-S.yaml |
| PP-YOLOE_plus_SOD-L | 31.9 | 57.1448 | 1006.98 | 325.0 M | PP-YOLOE_plus_SOD-L.yaml |
| PP-YOLOE_plus_SOD-largesize-L | 42.7 | 458.521 | 11172.7 | 340.5 M | PP-YOLOE_plus_SOD-largesize-L.yaml |
| Model Name | mAP (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-YOLOE-L_human | 48.0 | 32.7754 | 777.691 | 196.1 M | PP-YOLOE-L_human.yaml |
| PP-YOLOE-S_human | 42.5 | 15.0118 | 179.317 | 28.8 M | PP-YOLOE-S_human.yaml |
| Model Name | mAP (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-YOLOE-L_vehicle | 63.9 | 32.5619 | 775.633 | 196.1 M | PP-YOLOE-L_vehicle.yaml |
| PP-YOLOE-S_vehicle | 61.3 | 15.3787 | 178.441 | 28.8 M | PP-YOLOE-S_vehicle.yaml |
| Model | AP (%) Easy/Medium/Hard |
GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size (M) | YAML File |
|---|---|---|---|---|---|
| BlazeFace | 77.7/73.4/49.5 | 0.447 | BlazeFace.yaml | ||
| BlazeFace-FPN-SSH | 83.2/80.5/60.5 | 0.606 | BlazeFace-FPN-SSH.yaml | ||
| PicoDet_LCNet_x2_5_face | 93.7/90.7/68.1 | 28.9 | PicoDet_LCNet_x2_5_face.yaml | ||
| PP-YOLOE_plus-S_face | 93.9/91.8/79.8 | 26.5 | PP-YOLOE_plus-S_face |
| Model Name | Avg (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| STFPM | 96.2 | - | - | 21.5 M | STFPM.yaml |
| Model Name | mIoU (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| Deeplabv3_Plus-R50 | 80.36 | 61.0531 | 1513.58 | 94.9 M | Deeplabv3_Plus-R50.yaml |
| Deeplabv3_Plus-R101 | 81.10 | 100.026 | 2460.71 | 162.5 M | Deeplabv3_Plus-R101.yaml |
| Deeplabv3-R50 | 79.90 | 82.2631 | 1735.83 | 138.3 M | Deeplabv3-R50.yaml |
| Deeplabv3-R101 | 80.85 | 121.492 | 2685.51 | 205.9 M | Deeplabv3-R101.yaml |
| OCRNet_HRNet-W18 | 80.67 | 48.2335 | 906.385 | 43.1 M | OCRNet_HRNet-W18.yaml |
| OCRNet_HRNet-W48 | 82.15 | 78.9976 | 2226.95 | 249.8 M | OCRNet_HRNet-W48.yaml |
| PP-LiteSeg-T | 73.10 | 7.6827 | 138.683 | 28.5 M | PP-LiteSeg-T.yaml |
| PP-LiteSeg-B | 75.25 | 10.9935 | 194.727 | 47.0 M | PP-LiteSeg-B.yaml |
| SegFormer-B0 (slice) | 76.73 | 11.1946 | 268.929 | 13.2 M | SegFormer-B0.yaml |
| SegFormer-B1 (slice) | 78.35 | 17.9998 | 403.393 | 48.5 M | SegFormer-B1.yaml |
| SegFormer-B2 (slice) | 81.60 | 48.0371 | 1248.52 | 96.9 M | SegFormer-B2.yaml |
| SegFormer-B3 (slice) | 82.47 | 64.341 | 1666.35 | 167.3 M | SegFormer-B3.yaml |
| SegFormer-B4 (slice) | 82.38 | 82.4336 | 1995.42 | 226.7 M | SegFormer-B4.yaml |
| SegFormer-B5 (slice) | 82.58 | 97.3717 | 2420.19 | 229.7 M | SegFormer-B5.yaml |
| Model Name | mIoU (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| SeaFormer_base(slice) | 40.92 | 24.4073 | 397.574 | 30.8 M | SeaFormer_base.yaml |
| SeaFormer_large (slice) | 43.66 | 27.8123 | 550.464 | 49.8 M | SeaFormer_large.yaml |
| SeaFormer_small (slice) | 38.73 | 19.2295 | 358.343 | 14.3 M | SeaFormer_small.yaml |
| SeaFormer_tiny (slice) | 34.58 | 13.9496 | 330.132 | 6.1 M | SeaFormer_tiny.yaml |
| Model Name | Mask AP | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| Mask-RT-DETR-H | 50.6 | 132.693 | 4896.17 | 449.9 M | Mask-RT-DETR-H.yaml |
| Mask-RT-DETR-L | 45.7 | 46.5059 | 2575.92 | 113.6 M | Mask-RT-DETR-L.yaml |
| Mask-RT-DETR-M | 42.7 | 36.8329 | - | 66.6 M | Mask-RT-DETR-M.yaml |
| Mask-RT-DETR-S | 41.0 | 33.5007 | - | 51.8 M | Mask-RT-DETR-S.yaml |
| Mask-RT-DETR-X | 47.5 | 75.755 | 3358.04 | 237.5 M | Mask-RT-DETR-X.yaml |
| Cascade-MaskRCNN-ResNet50-FPN | 36.3 | - | - | 254.8 M | Cascade-MaskRCNN-ResNet50-FPN.yaml |
| Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN | 39.1 | - | - | 254.7 M | Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml |
| MaskRCNN-ResNet50-FPN | 35.6 | - | - | 157.5 M | MaskRCNN-ResNet50-FPN.yaml |
| MaskRCNN-ResNet50-vd-FPN | 36.4 | - | - | 157.5 M | MaskRCNN-ResNet50-vd-FPN.yaml |
| MaskRCNN-ResNet50 | 32.8 | - | - | 127.8 M | MaskRCNN-ResNet50.yaml |
| MaskRCNN-ResNet101-FPN | 36.6 | - | - | 225.4 M | MaskRCNN-ResNet101-FPN.yaml |
| MaskRCNN-ResNet101-vd-FPN | 38.1 | - | - | 225.1 M | MaskRCNN-ResNet101-vd-FPN.yaml |
| MaskRCNN-ResNeXt101-vd-FPN | 39.5 | - | - | 370.0 M | MaskRCNN-ResNeXt101-vd-FPN.yaml |
| PP-YOLOE_seg-S | 32.5 | - | - | 31.5 M | PP-YOLOE_seg-S.yaml |
Note: The above accuracy metrics are evaluated on the COCO2017 validation set using Mask AP(0.5:0.95).
| Model Name | Detection Hmean (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-OCRv4_mobile_det | 77.79 | 10.6923 | 120.177 | 4.2 M | PP-OCRv4_mobile_det.yaml |
| PP-OCRv4_server_det | 82.69 | 83.3501 | 2434.01 | 100.1M | PP-OCRv4_server_det.yaml |
| Model Name | Detection Hmean (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-OCRv4_mobile_seal_det | 96.47 | 10.5878 | 131.813 | 4.7 M | PP-OCRv4_mobile_seal_det.yaml |
| PP-OCRv4_server_seal_det | 98.21 | 84.341 | 2425.06 | 108.3 M | PP-OCRv4_server_seal_det.yaml |
| Model Name | Recognition Avg Accuracy (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PP-OCRv4_mobile_rec | 78.20 | 7.95018 | 46.7868 | 10.6 M | PP-OCRv4_mobile_rec.yaml |
| PP-OCRv4_server_rec | 79.20 | 7.19439 | 140.179 | 71.2 M | PP-OCRv4_server_rec.yaml |
| Model Name | Recognition Avg Accuracy (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| ch_SVTRv2_rec | 68.81 | 8.36801 | 165.706 | 73.9 M | ch_SVTRv2_rec.yaml |
| Model Name | Recognition Avg Accuracy (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| ch_RepSVTR_rec | 65.07 | 10.5047 | 51.5647 | 22.1 M | ch_RepSVTR_rec.yaml |
| Model Name | BLEU Score | Normed Edit Distance | ExpRate (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|---|---|
| LaTeX_OCR_rec | 0.8821 | 0.0823 | 40.01 | - | - | 89.7 M | LaTeX_OCR_rec.yaml |
| Model Name | Accuracy (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| SLANet | 59.52 | 522.536 | 1845.37 | 6.9 M | SLANet.yaml |
| SLANet_plus | 63.69 | 522.536 | 1845.37 | 6.9 M | SLANet_plus.yaml |
| Model Name | MS-SSIM (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| UVDoc | 54.40 | - | - | 30.3 M | UVDoc.yaml |
| Model Name | mAP (%) | GPU Inference Time (ms) | CPU Inference Time (ms) | Model Size | YAML File |
|---|---|---|---|---|---|
| PicoDet_layout_1x | 86.8 | 13.036 | 91.2634 | 7.4 M | PicoDet_layout_1x.yaml |
| PicoDet-S_layout_3cls | 87.1 | 13.521 | 45.7633 | 4.8 M | PicoDet-S_layout_3cls.yaml |
| PicoDet-S_layout_17cls | 70.3 | 13.5632 | 46.2059 | 4.8 M | PicoDet-S_layout_17cls.yaml |
| PicoDet-L_layout_3cls | 89.3 | 15.7425 | 159.771 | 22.6 M | PicoDet-L_layout_3cls.yaml |
| PicoDet-L_layout_17cls | 79.9 | 17.1901 | 160.262 | 22.6 M | PicoDet-L_layout_17cls.yaml |
| RT-DETR-H_layout_3cls | 95.9 | 114.644 | 3832.62 | 470.1 M | RT-DETR-H_layout_3cls.yaml |
| RT-DETR-H_layout_17cls | 92.6 | 115.126 | 3827.25 | 470.2 M | RT-DETR-H_layout_17cls.yaml |
| Model Name | mse | mae | Model Size | YAML File |
|---|---|---|---|---|
| DLinear | 0.382 | 0.394 | 72 K | DLinear.yaml |
| NLinear | 0.386 | 0.392 | 40 K | NLinear.yaml |
| Nonstationary | 0.600 | 0.515 | 55.5 M | Nonstationary.yaml |
| PatchTST | 0.385 | 0.397 | 2.0 M | PatchTST.yaml |
| RLinear | 0.384 | 0.392 | 40 K | RLinear.yaml |
| TiDE | 0.405 | 0.412 | 31.7 M | TiDE.yaml |
| TimesNet | 0.417 | 0.431 | 4.9 M | TimesNet.yaml |
| Model Name | Precision | Recall | f1_score | Model Size | YAML File |
|---|---|---|---|---|---|
| AutoEncoder_ad | 99.36 | 84.36 | 91.25 | 52 K | AutoEncoder_ad.yaml |
| DLinear_ad | 98.98 | 93.96 | 96.41 | 112 K | DLinear_ad.yaml |
| Nonstationary_ad | 98.55 | 88.95 | 93.51 | 1.8 M | Nonstationary_ad.yaml |
| PatchTST_ad | 98.78 | 90.70 | 94.57 | 320 K | PatchTST_ad.yaml |
| TimesNet_ad | 98.37 | 94.80 | 96.56 | 1.3 M | TimesNet_ad.yaml |
| Model Name | acc (%) | Model Size | YAML File |
|---|---|---|---|
| TimesNet_cls | 87.5 | 792 K | TimesNet_cls.yaml |
Note: All GPU inference times for the above models are based on an NVIDIA Tesla T4 machine with FP32 precision. CPU inference speeds are based on an Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz with 8 threads and FP32 precision.