coco_split.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os.path as osp
  15. import random
  16. import json
  17. from pycocotools.coco import COCO
  18. from .utils import MyEncoder
  19. import paddlex.utils.logging as logging
  20. def split_coco_dataset(dataset_dir, val_percent, test_percent, save_dir):
  21. if not osp.exists(osp.join(dataset_dir, "annotations.json")):
  22. logging.error("\'annotations.json\' is not found in {}!".format(
  23. dataset_dir))
  24. annotation_file = osp.join(dataset_dir, "annotations.json")
  25. coco = COCO(annotation_file)
  26. img_ids = coco.getImgIds()
  27. cat_ids = coco.getCatIds()
  28. anno_ids = coco.getAnnIds()
  29. val_num = int(len(img_ids) * val_percent)
  30. test_num = int(len(img_ids) * test_percent)
  31. train_num = len(img_ids) - val_num - test_num
  32. random.shuffle(img_ids)
  33. train_files_ids = img_ids[:train_num]
  34. val_files_ids = img_ids[train_num:train_num + val_num]
  35. test_files_ids = img_ids[train_num + val_num:]
  36. for img_id_list in [train_files_ids, val_files_ids, test_files_ids]:
  37. img_anno_ids = coco.getAnnIds(imgIds=img_id_list, iscrowd=0)
  38. imgs = coco.loadImgs(img_id_list)
  39. instances = coco.loadAnns(img_anno_ids)
  40. categories = coco.loadCats(cat_ids)
  41. img_dict = {
  42. "annotations": instances,
  43. "images": imgs,
  44. "categories": categories
  45. }
  46. if img_id_list == train_files_ids:
  47. json_file = open(osp.join(save_dir, 'train.json'), 'w+')
  48. json.dump(img_dict, json_file, cls=MyEncoder)
  49. elif img_id_list == val_files_ids:
  50. json_file = open(osp.join(save_dir, 'val.json'), 'w+')
  51. json.dump(img_dict, json_file, cls=MyEncoder)
  52. elif img_id_list == test_files_ids and len(test_files_ids):
  53. json_file = open(osp.join(save_dir, 'test.json'), 'w+')
  54. json.dump(img_dict, json_file, cls=MyEncoder)
  55. return train_num, val_num, test_num