| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from .ops import *
- from .box_utils import *
- import random
- import os.path as osp
- import numpy as np
- from PIL import Image, ImageEnhance
- import cv2
- class Compose:
- """根据数据预处理/增强列表对输入数据进行操作。
- 所有操作的输入图像流形状均是[H, W, C],其中H为图像高,W为图像宽,C为图像通道数。
- Args:
- transforms (list): 数据预处理/增强列表。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- def __init__(self, transforms):
- if not isinstance(transforms, list):
- raise TypeError('The transforms must be a list!')
- if len(transforms) < 1:
- raise ValueError('The length of transforms ' + \
- 'must be equal or larger than 1!')
- self.transforms = transforms
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (str/np.ndarray): 图像路径/图像np.ndarray数据。
- im_info (dict): 存储与图像相关的信息,dict中的字段如下:
- - im_id (np.ndarray): 图像序列号,形状为(1,)。
- - origin_shape (np.ndarray): 图像原始大小,形状为(2,),
- origin_shape[0]为高,origin_shape[1]为宽。
- - mixup (list): list为[im, im_info, label_info],分别对应
- 与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
- 注意,当前epoch若无需进行mixup,则无该字段。
- label_info (dict): 存储与标注框相关的信息,dict中的字段如下:
- - gt_bbox (np.ndarray): 真实标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 每个真实标注框内的多边形分割区域,每个分割区域由点的x、y坐标组成,
- 长度为n,其中n代表真实标注框的个数。
- - is_crowd (np.ndarray): 每个真实标注框中是否是一组对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - difficult (np.ndarray): 每个真实标注框中的对象是否为难识别对象,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Returns:
- tuple: 根据网络所需字段所组成的tuple;
- 字段由transforms中的最后一个数据预处理操作决定。
- """
- def decode_image(im_file, im_info, label_info):
- if im_info is None:
- im_info = dict()
- try:
- im = cv2.imread(im_file).astype('float32')
- except:
- raise TypeError(
- 'Can\'t read The image file {}!'.format(im_file))
- im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
- # make default im_info with [h, w, 1]
- im_info['im_resize_info'] = np.array(
- [im.shape[0], im.shape[1], 1.], dtype=np.float32)
- # copy augment_shape from origin_shape
- im_info['augment_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- # decode mixup image
- if 'mixup' in im_info:
- im_info['mixup'] = \
- decode_image(im_info['mixup'][0],
- im_info['mixup'][1],
- im_info['mixup'][2])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- outputs = decode_image(im, im_info, label_info)
- im = outputs[0]
- im_info = outputs[1]
- if len(outputs) == 3:
- label_info = outputs[2]
- for op in self.transforms:
- if im is None:
- return None
- outputs = op(im, im_info, label_info)
- im = outputs[0]
- return outputs
- class ResizeByShort:
- """根据图像的短边调整图像大小(resize)。
- 1. 获取图像的长边和短边长度。
- 2. 根据短边与short_size的比例,计算长边的目标长度,
- 此时高、宽的resize比例为short_size/原图短边长度。
- 3. 如果max_size>0,调整resize比例:
- 如果长边的目标长度>max_size,则高、宽的resize比例为max_size/原图长边长度。
- 4. 根据调整大小的比例对图像进行resize。
- Args:
- target_size (int): 短边目标长度。默认为800。
- max_size (int): 长边目标长度的最大限制。默认为1333。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, short_size=800, max_size=1333):
- self.max_size = int(max_size)
- if not isinstance(short_size, int):
- raise TypeError(
- "Type of short_size is invalid. Must be Integer, now is {}".
- format(type(short_size)))
- self.short_size = short_size
- if not (isinstance(self.max_size, int)):
- raise TypeError("max_size: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - im_resize_info (np.ndarray): resize后的图像高、resize后的图像宽、resize后的图像相对原始图的缩放比例
- 三者组成的np.ndarray,形状为(3,)。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("ResizeByShort: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('ResizeByShort: image is not 3-dimensional.')
- im_short_size = min(im.shape[0], im.shape[1])
- im_long_size = max(im.shape[0], im.shape[1])
- scale = float(self.short_size) / im_short_size
- if self.max_size > 0 and np.round(
- scale * im_long_size) > self.max_size:
- scale = float(self.max_size) / float(im_long_size)
- resized_width = int(round(im.shape[1] * scale))
- resized_height = int(round(im.shape[0] * scale))
- im_resize_info = [resized_height, resized_width, scale]
- im = cv2.resize(
- im, (resized_width, resized_height),
- interpolation=cv2.INTER_LINEAR)
- im_info['im_resize_info'] = np.array(im_resize_info).astype(np.float32)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Padding:
- """将图像的长和宽padding至coarsest_stride的倍数。如输入图像为[300, 640],
- `coarest_stride`为32,则由于300不为32的倍数,因此在图像最右和最下使用0值
- 进行padding,最终输出图像为[320, 640]。
- 1. 如果coarsest_stride为1则直接返回。
- 2. 获取图像的高H、宽W。
- 3. 计算填充后图像的高H_new、宽W_new。
- 4. 构建大小为(H_new, W_new, 3)像素值为0的np.ndarray,
- 并将原图的np.ndarray粘贴于左上角。
- Args:
- coarsest_stride (int): 填充后的图像长、宽为该参数的倍数,默认为1。
- """
- def __init__(self, coarsest_stride=1):
- self.coarsest_stride = coarsest_stride
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if self.coarsest_stride == 1:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Padding: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Padding: image is not 3-dimensional.')
- im_h, im_w, im_c = im.shape[:]
- if self.coarsest_stride > 1:
- padding_im_h = int(
- np.ceil(im_h / self.coarsest_stride) * self.coarsest_stride)
- padding_im_w = int(
- np.ceil(im_w / self.coarsest_stride) * self.coarsest_stride)
- padding_im = np.zeros((padding_im_h, padding_im_w, im_c),
- dtype=np.float32)
- padding_im[:im_h, :im_w, :] = im
- if label_info is None:
- return (padding_im, im_info)
- else:
- return (padding_im, im_info, label_info)
- class Resize:
- """调整图像大小(resize)。
- - 当目标大小(target_size)类型为int时,根据插值方式,
- 将图像resize为[target_size, target_size]。
- - 当目标大小(target_size)类型为list或tuple时,根据插值方式,
- 将图像resize为target_size。
- 注意:当插值方式为“RANDOM”时,则随机选取一种插值方式进行resize。
- Args:
- target_size (int/list/tuple): 短边目标长度。默认为608。
- interp (str): resize的插值方式,与opencv的插值方式对应,取值范围为
- ['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']。默认为"LINEAR"。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 插值方式不在['NEAREST', 'LINEAR', 'CUBIC',
- 'AREA', 'LANCZOS4', 'RANDOM']中。
- """
- # The interpolation mode
- interp_dict = {
- 'NEAREST': cv2.INTER_NEAREST,
- 'LINEAR': cv2.INTER_LINEAR,
- 'CUBIC': cv2.INTER_CUBIC,
- 'AREA': cv2.INTER_AREA,
- 'LANCZOS4': cv2.INTER_LANCZOS4
- }
- def __init__(self, target_size=608, interp='LINEAR'):
- self.interp = interp
- if not (interp == "RANDOM" or interp in self.interp_dict):
- raise ValueError("interp should be one of {}".format(
- self.interp_dict.keys()))
- if isinstance(target_size, list) or isinstance(target_size, tuple):
- if len(target_size) != 2:
- raise TypeError(
- 'when target is list or tuple, it should include 2 elements, but it is {}'
- .format(target_size))
- elif not isinstance(target_size, int):
- raise TypeError(
- "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
- .format(type(target_size)))
- self.target_size = target_size
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if im_info is None:
- im_info = dict()
- if not isinstance(im, np.ndarray):
- raise TypeError("Resize: image type is not numpy.")
- if len(im.shape) != 3:
- raise ValueError('Resize: image is not 3-dimensional.')
- if self.interp == "RANDOM":
- interp = random.choice(list(self.interp_dict.keys()))
- else:
- interp = self.interp
- im = resize(im, self.target_size, self.interp_dict[interp])
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomHorizontalFlip:
- """随机翻转图像、标注框、分割信息,模型训练时的数据增强操作。
- 1. 随机采样一个0-1之间的小数,当小数小于水平翻转概率时,
- 执行2-4步操作,否则直接返回。
- 2. 水平翻转图像。
- 3. 计算翻转后的真实标注框的坐标,更新label_info中的gt_bbox信息。
- 4. 计算翻转后的真实分割区域的坐标,更新label_info中的gt_poly信息。
- Args:
- prob (float): 随机水平翻转的概率。默认为0.5。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, prob=0.5):
- self.prob = prob
- if not isinstance(self.prob, float):
- raise TypeError("RandomHorizontalFlip: input type is invalid.")
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - gt_bbox (np.ndarray): 水平翻转后的标注框坐标[x1, y1, x2, y2],形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_poly (list): 水平翻转后的多边形分割区域的x、y坐标,长度为n,
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- if not isinstance(im, np.ndarray):
- raise TypeError(
- "RandomHorizontalFlip: image is not a numpy array.")
- if len(im.shape) != 3:
- raise ValueError(
- "RandomHorizontalFlip: image is not 3-dimensional.")
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomHorizontalFlip! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'augment_shape' not in im_info:
- raise TypeError('Cannot do RandomHorizontalFlip! ' + \
- 'Becasuse augment_shape is not in im_info!')
- if 'gt_bbox' not in label_info:
- raise TypeError('Cannot do RandomHorizontalFlip! ' + \
- 'Becasuse gt_bbox is not in label_info!')
- augment_shape = im_info['augment_shape']
- gt_bbox = label_info['gt_bbox']
- height = augment_shape[0]
- width = augment_shape[1]
- if np.random.uniform(0, 1) < self.prob:
- im = horizontal_flip(im)
- if gt_bbox.shape[0] == 0:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- label_info['gt_bbox'] = box_horizontal_flip(gt_bbox, width)
- if 'gt_poly' in label_info and \
- len(label_info['gt_poly']) != 0:
- label_info['gt_poly'] = segms_horizontal_flip(
- label_info['gt_poly'], height, width)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class Normalize:
- """对图像进行标准化。
- 1. 归一化图像到到区间[0.0, 1.0]。
- 2. 对图像进行减均值除以标准差操作。
- Args:
- mean (list): 图像数据集的均值。默认为[0.485, 0.456, 0.406]。
- std (list): 图像数据集的标准差。默认为[0.229, 0.224, 0.225]。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
- self.mean = mean
- self.std = std
- if not (isinstance(self.mean, list) and isinstance(self.std, list)):
- raise TypeError("NormalizeImage: input type is invalid.")
- from functools import reduce
- if reduce(lambda x, y: x * y, self.std) == 0:
- raise TypeError('NormalizeImage: std is invalid!')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (numnp.ndarraypy): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
- std = np.array(self.std)[np.newaxis, np.newaxis, :]
- im = normalize(im, mean, std)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomDistort:
- """以一定的概率对图像进行随机像素内容变换,模型训练时的数据增强操作
- 1. 对变换的操作顺序进行随机化操作。
- 2. 按照1中的顺序以一定的概率在范围[-range, range]对图像进行随机像素内容变换。
- Args:
- brightness_range (float): 明亮度因子的范围。默认为0.5。
- brightness_prob (float): 随机调整明亮度的概率。默认为0.5。
- contrast_range (float): 对比度因子的范围。默认为0.5。
- contrast_prob (float): 随机调整对比度的概率。默认为0.5。
- saturation_range (float): 饱和度因子的范围。默认为0.5。
- saturation_prob (float): 随机调整饱和度的概率。默认为0.5。
- hue_range (int): 色调因子的范围。默认为18。
- hue_prob (float): 随机调整色调的概率。默认为0.5。
- """
- def __init__(self,
- brightness_range=0.5,
- brightness_prob=0.5,
- contrast_range=0.5,
- contrast_prob=0.5,
- saturation_range=0.5,
- saturation_prob=0.5,
- hue_range=18,
- hue_prob=0.5):
- self.brightness_range = brightness_range
- self.brightness_prob = brightness_prob
- self.contrast_range = contrast_range
- self.contrast_prob = contrast_prob
- self.saturation_range = saturation_range
- self.saturation_prob = saturation_prob
- self.hue_range = hue_range
- self.hue_prob = hue_prob
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- """
- brightness_lower = 1 - self.brightness_range
- brightness_upper = 1 + self.brightness_range
- contrast_lower = 1 - self.contrast_range
- contrast_upper = 1 + self.contrast_range
- saturation_lower = 1 - self.saturation_range
- saturation_upper = 1 + self.saturation_range
- hue_lower = -self.hue_range
- hue_upper = self.hue_range
- ops = [brightness, contrast, saturation, hue]
- random.shuffle(ops)
- params_dict = {
- 'brightness': {
- 'brightness_lower': brightness_lower,
- 'brightness_upper': brightness_upper
- },
- 'contrast': {
- 'contrast_lower': contrast_lower,
- 'contrast_upper': contrast_upper
- },
- 'saturation': {
- 'saturation_lower': saturation_lower,
- 'saturation_upper': saturation_upper
- },
- 'hue': {
- 'hue_lower': hue_lower,
- 'hue_upper': hue_upper
- }
- }
- prob_dict = {
- 'brightness': self.brightness_prob,
- 'contrast': self.contrast_prob,
- 'saturation': self.saturation_prob,
- 'hue': self.hue_prob
- }
- im = im.astype('uint8')
- im = Image.fromarray(im)
- for id in range(4):
- params = params_dict[ops[id].__name__]
- prob = prob_dict[ops[id].__name__]
- params['im'] = im
- if np.random.uniform(0, 1) < prob:
- im = ops[id](**params)
- im = np.asarray(im).astype('float32')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class MixupImage:
- """对图像进行mixup操作,模型训练时的数据增强操作,目前仅YOLOv3模型支持该transform。
- 当label_info中不存在mixup字段时,直接返回,否则进行下述操作:
- 1. 从随机beta分布中抽取出随机因子factor。
- 2.
- - 当factor>=1.0时,去除label_info中的mixup字段,直接返回。
- - 当factor<=0.0时,直接返回label_info中的mixup字段,并在label_info中去除该字段。
- - 其余情况,执行下述操作:
- (1)原图像乘以factor,mixup图像乘以(1-factor),叠加2个结果。
- (2)拼接原图像标注框和mixup图像标注框。
- (3)拼接原图像标注框类别和mixup图像标注框类别。
- (4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
- 3. 更新im_info中的augment_shape信息。
- Args:
- alpha (float): 随机beta分布的下限。默认为1.5。
- beta (float): 随机beta分布的上限。默认为1.5。
- mixup_epoch (int): 在前mixup_epoch轮使用mixup增强操作;当该参数为-1时,该策略不会生效。
- 默认为-1。
- Raises:
- ValueError: 数据长度不匹配。
- """
- def __init__(self, alpha=1.5, beta=1.5, mixup_epoch=-1):
- self.alpha = alpha
- self.beta = beta
- if self.alpha <= 0.0:
- raise ValueError("alpha shold be positive in MixupImage")
- if self.beta <= 0.0:
- raise ValueError("beta shold be positive in MixupImage")
- self.mixup_epoch = mixup_epoch
- def _mixup_img(self, img1, img2, factor):
- h = max(img1.shape[0], img2.shape[0])
- w = max(img1.shape[1], img2.shape[1])
- img = np.zeros((h, w, img1.shape[2]), 'float32')
- img[:img1.shape[0], :img1.shape[1], :] = \
- img1.astype('float32') * factor
- img[:img2.shape[0], :img2.shape[1], :] += \
- img2.astype('float32') * (1.0 - factor)
- return img.astype('uint8')
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - augment_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- im_info删除的字段:
- - mixup (list): 与当前字段进行mixup的图像相关信息。
- label_info更新字段为:
- - gt_bbox (np.ndarray): mixup后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): mixup后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): mixup后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the im_info can not be None!')
- if 'mixup' not in im_info:
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- factor = np.random.beta(self.alpha, self.beta)
- factor = max(0.0, min(1.0, factor))
- if im_info['epoch'] > self.mixup_epoch \
- or factor >= 1.0:
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- if factor <= 0.0:
- return im_info.pop('mixup')
- im = self._mixup_img(im, im_info['mixup'][0], factor)
- if label_info is None:
- raise TypeError('Cannot do MixupImage! ' +
- 'Becasuse the label_info can not be None!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info or \
- 'gt_score' not in label_info:
- raise TypeError('Cannot do MixupImage! ' + \
- 'Becasuse gt_bbox/gt_class/gt_score is not in label_info!')
- gt_bbox1 = label_info['gt_bbox']
- gt_bbox2 = im_info['mixup'][2]['gt_bbox']
- gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
- gt_class1 = label_info['gt_class']
- gt_class2 = im_info['mixup'][2]['gt_class']
- gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
- gt_score1 = label_info['gt_score']
- gt_score2 = im_info['mixup'][2]['gt_score']
- gt_score = np.concatenate(
- (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
- label_info['gt_bbox'] = gt_bbox
- label_info['gt_score'] = gt_score
- label_info['gt_class'] = gt_class
- im_info['augment_shape'] = np.array([im.shape[0],
- im.shape[1]]).astype('int32')
- im_info.pop('mixup')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomExpand:
- """随机扩张图像,模型训练时的数据增强操作。
- 1. 随机选取扩张比例(扩张比例大于1时才进行扩张)。
- 2. 计算扩张后图像大小。
- 3. 初始化像素值为数据集均值的图像,并将原图像随机粘贴于该图像上。
- 4. 根据原图像粘贴位置换算出扩张后真实标注框的位置坐标。
- Args:
- max_ratio (float): 图像扩张的最大比例。默认为4.0。
- prob (float): 随机扩张的概率。默认为0.5。
- mean (list): 图像数据集的均值(0-255)。默认为[127.5, 127.5, 127.5]。
- """
- def __init__(self, max_ratio=4., prob=0.5, mean=[127.5, 127.5, 127.5]):
- self.max_ratio = max_ratio
- self.mean = mean
- self.prob = prob
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,im_info更新字段为:
- - augment_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- label_info更新字段为:
- - gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机扩张后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomExpand! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'augment_shape' not in im_info:
- raise TypeError('Cannot do RandomExpand! ' + \
- 'Becasuse augment_shape is not in im_info!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomExpand! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- prob = np.random.uniform(0, 1)
- augment_shape = im_info['augment_shape']
- im_width = augment_shape[1]
- im_height = augment_shape[0]
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- if prob < self.prob:
- if self.max_ratio - 1 >= 0.01:
- expand_ratio = np.random.uniform(1, self.max_ratio)
- height = int(im_height * expand_ratio)
- width = int(im_width * expand_ratio)
- h_off = math.floor(np.random.uniform(0, height - im_height))
- w_off = math.floor(np.random.uniform(0, width - im_width))
- expand_bbox = [
- -w_off / im_width, -h_off / im_height,
- (width - w_off) / im_width, (height - h_off) / im_height
- ]
- expand_im = np.ones((height, width, 3))
- expand_im = np.uint8(expand_im * np.squeeze(self.mean))
- expand_im = Image.fromarray(expand_im)
- im = im.astype('uint8')
- im = Image.fromarray(im)
- expand_im.paste(im, (int(w_off), int(h_off)))
- expand_im = np.asarray(expand_im)
- for i in range(gt_bbox.shape[0]):
- gt_bbox[i][0] = gt_bbox[i][0] / im_width
- gt_bbox[i][1] = gt_bbox[i][1] / im_height
- gt_bbox[i][2] = gt_bbox[i][2] / im_width
- gt_bbox[i][3] = gt_bbox[i][3] / im_height
- gt_bbox, gt_class, _ = filter_and_process(
- expand_bbox, gt_bbox, gt_class)
- for i in range(gt_bbox.shape[0]):
- gt_bbox[i][0] = gt_bbox[i][0] * width
- gt_bbox[i][1] = gt_bbox[i][1] * height
- gt_bbox[i][2] = gt_bbox[i][2] * width
- gt_bbox[i][3] = gt_bbox[i][3] * height
- im = expand_im.astype('float32')
- label_info['gt_bbox'] = gt_bbox
- label_info['gt_class'] = gt_class
- im_info['augment_shape'] = np.array([height,
- width]).astype('int32')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class RandomCrop:
- """随机裁剪图像。
- 1. 根据batch_sampler计算获取裁剪候选区域的位置。
- (1) 根据min scale、max scale、min aspect ratio、max aspect ratio计算随机剪裁的高、宽。
- (2) 根据随机剪裁的高、宽随机选取剪裁的起始点。
- (3) 筛选出裁剪候选区域:
- - 当satisfy_all为True时,需所有真实标注框与裁剪候选区域的重叠度满足需求时,该裁剪候选区域才可保留。
- - 当satisfy_all为False时,当有一个真实标注框与裁剪候选区域的重叠度满足需求时,该裁剪候选区域就可保留。
- 2. 遍历所有裁剪候选区域:
- (1) 若真实标注框与候选裁剪区域不重叠,或其中心点不在候选裁剪区域,
- 则将该真实标注框去除。
- (2) 计算相对于该候选裁剪区域,真实标注框的位置,并筛选出对应的类别、混合得分。
- (3) 若avoid_no_bbox为False,返回当前裁剪后的信息即可;
- 反之,要找到一个裁剪区域中真实标注框个数不为0的区域,才返回裁剪后的信息。
- Args:
- batch_sampler (list): 随机裁剪参数的多种组合,每种组合包含8个值,如下:
- - max sample (int):满足当前组合的裁剪区域的个数上限。
- - max trial (int): 查找满足当前组合的次数。
- - min scale (float): 裁剪面积相对原面积,每条边缩短比例的最小限制。
- - max scale (float): 裁剪面积相对原面积,每条边缩短比例的最大限制。
- - min aspect ratio (float): 裁剪后短边缩放比例的最小限制。
- - max aspect ratio (float): 裁剪后短边缩放比例的最大限制。
- - min overlap (float): 真实标注框与裁剪图像重叠面积的最小限制。
- - max overlap (float): 真实标注框与裁剪图像重叠面积的最大限制。
- 默认值为None,当为None时采用如下设置:
- [[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
- satisfy_all (bool): 是否需要所有标注框满足条件,裁剪候选区域才保留。默认为False。
- avoid_no_bbox (bool): 是否对裁剪图像不存在标注框的图像进行保留。默认为True。
- """
- def __init__(self,
- batch_sampler=None,
- satisfy_all=False,
- avoid_no_bbox=True):
- if batch_sampler is None:
- batch_sampler = [[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
- [1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
- self.batch_sampler = batch_sampler
- self.satisfy_all = satisfy_all
- self.avoid_no_bbox = avoid_no_bbox
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
- 当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
- 存储与标注框相关信息的字典。
- 其中,label_info更新字段为:
- - gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
- 其中n代表真实标注框的个数。
- - gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
- 其中n代表真实标注框的个数。
- - gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
- 其中n代表真实标注框的个数。
- Raises:
- TypeError: 形参数据类型不满足需求。
- """
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do RandomCrop! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if 'augment_shape' not in im_info:
- raise TypeError('Cannot do RandomCrop! ' + \
- 'Becasuse augment_shape is not in im_info!')
- if 'gt_bbox' not in label_info or \
- 'gt_class' not in label_info:
- raise TypeError('Cannot do RandomCrop! ' + \
- 'Becasuse gt_bbox/gt_class is not in label_info!')
- augment_shape = im_info['augment_shape']
- im_width = augment_shape[1]
- im_height = augment_shape[0]
- gt_bbox = label_info['gt_bbox']
- gt_bbox_tmp = gt_bbox.copy()
- for i in range(gt_bbox_tmp.shape[0]):
- gt_bbox_tmp[i][0] = gt_bbox[i][0] / im_width
- gt_bbox_tmp[i][1] = gt_bbox[i][1] / im_height
- gt_bbox_tmp[i][2] = gt_bbox[i][2] / im_width
- gt_bbox_tmp[i][3] = gt_bbox[i][3] / im_height
- gt_class = label_info['gt_class']
- gt_score = None
- if 'gt_score' in label_info:
- gt_score = label_info['gt_score']
- sampled_bbox = []
- gt_bbox_tmp = gt_bbox_tmp.tolist()
- for sampler in self.batch_sampler:
- found = 0
- for i in range(sampler[1]):
- if found >= sampler[0]:
- break
- sample_bbox = generate_sample_bbox(sampler)
- if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox_tmp,
- self.satisfy_all):
- sampled_bbox.append(sample_bbox)
- found = found + 1
- im = np.array(im)
- while sampled_bbox:
- idx = int(np.random.uniform(0, len(sampled_bbox)))
- sample_bbox = sampled_bbox.pop(idx)
- sample_bbox = clip_bbox(sample_bbox)
- crop_bbox, crop_class, crop_score = \
- filter_and_process(sample_bbox, gt_bbox_tmp, gt_class, gt_score)
- if self.avoid_no_bbox:
- if len(crop_bbox) < 1:
- continue
- xmin = int(sample_bbox[0] * im_width)
- xmax = int(sample_bbox[2] * im_width)
- ymin = int(sample_bbox[1] * im_height)
- ymax = int(sample_bbox[3] * im_height)
- im = im[ymin:ymax, xmin:xmax]
- for i in range(crop_bbox.shape[0]):
- crop_bbox[i][0] = crop_bbox[i][0] * (xmax - xmin)
- crop_bbox[i][1] = crop_bbox[i][1] * (ymax - ymin)
- crop_bbox[i][2] = crop_bbox[i][2] * (xmax - xmin)
- crop_bbox[i][3] = crop_bbox[i][3] * (ymax - ymin)
- label_info['gt_bbox'] = crop_bbox
- label_info['gt_class'] = crop_class
- label_info['gt_score'] = crop_score
- im_info['augment_shape'] = np.array([ymax - ymin,
- xmax - xmin]).astype('int32')
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- if label_info is None:
- return (im, im_info)
- else:
- return (im, im_info, label_info)
- class ArrangeFasterRCNN:
- """获取FasterRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象;
- 当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape, gt_bbox, gt_class, is_difficult),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像id、图像大小信息、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_id = im_info['im_id']
- im_shape = np.array(
- (im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
- dtype=np.float32)
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_difficult = label_info['difficult']
- outputs = (im, im_resize_info, im_id, im_shape, gt_bbox, gt_class,
- is_difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeFasterRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
- dtype=np.float32)
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeMaskRCNN:
- """获取MaskRCNN模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, im_resize_info, gt_bbox, gt_class, is_crowd, gt_masks),分别对应
- 图像np.ndarray数据、图像相当对于原图的resize信息、真实标注框、真实标注框对应的类别、真实标注框内是否是一组对象、
- 真实分割区域;当mode为'eval'时,返回(im, im_resize_info, im_id, im_shape),分别对应图像np.ndarray数据、
- 图像相当对于原图的resize信息、图像id、图像大小信息;当mode为'test'或'quant'时,返回(im, im_resize_info, im_shape),
- 分别对应图像np.ndarray数据、图像相当对于原图的resize信息、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeTrainMaskRCNN! ' +
- 'Becasuse the im_info and label_info can not be None!')
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_resize_info = im_info['im_resize_info']
- gt_bbox = label_info['gt_bbox']
- gt_class = label_info['gt_class']
- is_crowd = label_info['is_crowd']
- assert 'gt_poly' in label_info
- segms = label_info['gt_poly']
- if len(segms) != 0:
- assert len(segms) == is_crowd.shape[0]
- gt_masks = []
- valid = True
- for i in range(len(segms)):
- segm = segms[i]
- gt_segm = []
- if is_crowd[i]:
- gt_segm.append([[0, 0]])
- else:
- for poly in segm:
- if len(poly) == 0:
- valid = False
- break
- gt_segm.append(np.array(poly).reshape(-1, 2))
- if (not valid) or len(gt_segm) == 0:
- break
- gt_masks.append(gt_segm)
- outputs = (im, im_resize_info, gt_bbox, gt_class, is_crowd,
- gt_masks)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeMaskRCNN! ' +
- 'Becasuse the im_info can not be None!')
- im_resize_info = im_info['im_resize_info']
- im_shape = np.array(
- (im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
- dtype=np.float32)
- if self.mode == 'eval':
- im_id = im_info['im_id']
- outputs = (im, im_resize_info, im_id, im_shape)
- else:
- outputs = (im, im_resize_info, im_shape)
- return outputs
- class ArrangeYOLOv3:
- """获取YOLOv3模型训练/验证/预测所需信息。
- Args:
- mode (str): 指定数据用于何种用途,取值范围为['train', 'eval', 'test', 'quant']。
- Raises:
- ValueError: mode的取值不在['train', 'eval', 'test', 'quant']之内。
- """
- def __init__(self, mode=None):
- if mode not in ['train', 'eval', 'test', 'quant']:
- raise ValueError(
- "mode must be in ['train', 'eval', 'test', 'quant']!")
- self.mode = mode
- def __call__(self, im, im_info=None, label_info=None):
- """
- Args:
- im (np.ndarray): 图像np.ndarray数据。
- im_info (dict, 可选): 存储与图像相关的信息。
- label_info (dict, 可选): 存储与标注框相关的信息。
- Returns:
- tuple: 当mode为'train'时,返回(im, gt_bbox, gt_class, gt_score, im_shape),分别对应
- 图像np.ndarray数据、真实标注框、真实标注框对应的类别、真实标注框混合得分、图像大小信息;
- 当mode为'eval'时,返回(im, im_shape, im_id, gt_bbox, gt_class, difficult),
- 分别对应图像np.ndarray数据、图像大小信息、图像id、真实标注框、真实标注框对应的类别、
- 真实标注框是否为难识别对象;当mode为'test'或'quant'时,返回(im, im_shape),
- 分别对应图像np.ndarray数据、图像大小信息。
- Raises:
- TypeError: 形参数据类型不满足需求。
- ValueError: 数据长度不匹配。
- """
- im = permute(im, False)
- if self.mode == 'train':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['augment_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- if len(label_info['gt_bbox']) != len(label_info['gt_score']):
- raise ValueError("gt num mismatch: bbox and score.")
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- gt_score = np.zeros((50, ), dtype=im.dtype)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- gt_score[:gt_num] = label_info['gt_score'][:gt_num, 0]
- # parse [x1, y1, x2, y2] to [x, y, w, h]
- gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
- gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
- outputs = (im, gt_bbox, gt_class, gt_score, im_shape)
- elif self.mode == 'eval':
- if im_info is None or label_info is None:
- raise TypeError(
- 'Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info and label_info can not be None!')
- im_shape = im_info['augment_shape']
- if len(label_info['gt_bbox']) != len(label_info['gt_class']):
- raise ValueError("gt num mismatch: bbox and class.")
- im_id = im_info['im_id']
- gt_bbox = np.zeros((50, 4), dtype=im.dtype)
- gt_class = np.zeros((50, ), dtype=np.int32)
- difficult = np.zeros((50, ), dtype=np.int32)
- gt_num = min(50, len(label_info['gt_bbox']))
- if gt_num > 0:
- label_info['gt_class'][:gt_num, 0] = label_info[
- 'gt_class'][:gt_num, 0] - 1
- gt_bbox[:gt_num, :] = label_info['gt_bbox'][:gt_num, :]
- gt_class[:gt_num] = label_info['gt_class'][:gt_num, 0]
- difficult[:gt_num] = label_info['difficult'][:gt_num, 0]
- outputs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
- else:
- if im_info is None:
- raise TypeError('Cannot do ArrangeYolov3! ' +
- 'Becasuse the im_info can not be None!')
- im_shape = im_info['augment_shape']
- outputs = (im, im_shape)
- return outputs
|