| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Dict
- from PIL import Image, ImageDraw
- from ....utils.fonts import PINGFANG_FONT, create_font
- from ...common.result import BaseCVResult, JsonMixin
- class DocPreprocessorResult(BaseCVResult):
- """doc preprocessor result"""
- def _to_img(self) -> Dict[str, Image.Image]:
- """
- Generate an image combining the original, rotated, and unwarping images.
- Returns:
- Dict[Image.Image]: A new image combining the original, rotated, and unwarping images
- """
- image = self["input_img"][:, :, ::-1]
- rot_img = self["rot_img"][:, :, ::-1]
- angle = self["angle"]
- output_img = self["output_img"][:, :, ::-1]
- use_doc_orientation_classify = self["model_settings"][
- "use_doc_orientation_classify"
- ]
- use_doc_unwarping = self["model_settings"]["use_doc_unwarping"]
- h1, w1 = image.shape[0:2]
- h2, w2 = rot_img.shape[0:2]
- h3, w3 = output_img.shape[0:2]
- h = max(max(h1, h2), h3)
- img_show = Image.new("RGB", (w1 + w2 + w3, h + 25), (255, 255, 255))
- img_show.paste(Image.fromarray(image), (0, 0, w1, h1))
- img_show.paste(Image.fromarray(rot_img), (w1, 0, w1 + w2, h2))
- img_show.paste(Image.fromarray(output_img), (w1 + w2, 0, w1 + w2 + w3, h3))
- draw_text = ImageDraw.Draw(img_show)
- txt_list = ["Original Image", "Rotated Image", "Unwarping Image"]
- txt_list[1] = f"Rotated Image ({use_doc_orientation_classify}, {angle})"
- txt_list[2] = f"Unwarping Image ({use_doc_unwarping})"
- region_w_list = [w1, w2, w3]
- beg_w_list = [0, w1, w1 + w2]
- for tno in range(len(txt_list)):
- txt = txt_list[tno]
- font = create_font(txt, (region_w_list[tno], 20), PINGFANG_FONT.path)
- draw_text.text(
- [10 + beg_w_list[tno], h + 2], txt, fill=(0, 0, 0), font=font
- )
- imgs = {"preprocessed_img": img_show}
- return imgs
- def _to_str(self, *args, **kwargs) -> Dict[str, str]:
- """Converts the instance's attributes to a dictionary and then to a string.
- Args:
- *args: Additional positional arguments passed to the base class method.
- **kwargs: Additional keyword arguments passed to the base class method.
- Returns:
- Dict[str, str]: A dictionary with the instance's attributes converted to strings.
- """
- data = {}
- data["input_path"] = self["input_path"]
- data["page_index"] = self["page_index"]
- data["model_settings"] = self["model_settings"]
- data["angle"] = self["angle"]
- return JsonMixin._to_str(data, *args, **kwargs)
- def _to_json(self, *args, **kwargs) -> Dict[str, str]:
- """
- Converts the object's data to a JSON dictionary.
- Args:
- *args: Positional arguments passed to the JsonMixin._to_json method.
- **kwargs: Keyword arguments passed to the JsonMixin._to_json method.
- Returns:
- Dict[str, str]: A dictionary containing the object's data in JSON format.
- """
- data = {}
- data["input_path"] = self["input_path"]
- data["page_index"] = self["page_index"]
- data["model_settings"] = self["model_settings"]
- data["angle"] = self["angle"]
- return JsonMixin._to_json(data, *args, **kwargs)
|