pipeline.py 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from typing import Any, Dict, List, Optional, Union
  15. import numpy as np
  16. from ....utils.deps import pipeline_requires_extra
  17. from ...models.instance_segmentation.result import InstanceSegResult
  18. from ...utils.hpi import HPIConfig
  19. from ...utils.pp_option import PaddlePredictorOption
  20. from .._parallel import AutoParallelImageSimpleInferencePipeline
  21. from ..base import BasePipeline
  22. class _InstanceSegmentationPipeline(BasePipeline):
  23. """Instance Segmentation Pipeline"""
  24. def __init__(
  25. self,
  26. config: Dict,
  27. device: str = None,
  28. pp_option: PaddlePredictorOption = None,
  29. use_hpip: bool = False,
  30. hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None,
  31. ) -> None:
  32. """
  33. Initializes the class with given configurations and options.
  34. Args:
  35. config (Dict): Configuration dictionary containing model and other parameters.
  36. device (str): The device to run the prediction on. Default is None.
  37. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None.
  38. use_hpip (bool, optional): Whether to use the high-performance
  39. inference plugin (HPIP) by default. Defaults to False.
  40. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional):
  41. The default high-performance inference configuration dictionary.
  42. Defaults to None.
  43. """
  44. super().__init__(
  45. device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config
  46. )
  47. instance_segmentation_model_config = config["SubModules"][
  48. "InstanceSegmentation"
  49. ]
  50. self.instance_segmentation_model = self.create_model(
  51. instance_segmentation_model_config
  52. )
  53. self.threshold = instance_segmentation_model_config["threshold"]
  54. def predict(
  55. self,
  56. input: Union[str, List[str], np.ndarray, List[np.ndarray]],
  57. threshold: Union[float, None] = None,
  58. **kwargs
  59. ) -> InstanceSegResult:
  60. """Predicts instance segmentation results for the given input.
  61. Args:
  62. input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images.
  63. threshold (Union[float, None]): The threshold value to filter out low-confidence predictions. Default is None.
  64. **kwargs: Additional keyword arguments that can be passed to the function.
  65. Returns:
  66. InstanceSegResult: The predicted instance segmentation results.
  67. """
  68. yield from self.instance_segmentation_model(input, threshold=threshold)
  69. @pipeline_requires_extra("cv")
  70. class InstanceSegmentationPipeline(AutoParallelImageSimpleInferencePipeline):
  71. entities = "instance_segmentation"
  72. @property
  73. def _pipeline_cls(self):
  74. return _InstanceSegmentationPipeline
  75. def _get_batch_size(self, config):
  76. return config["SubModules"]["InstanceSegmentation"].get("batch_size", 1)