model.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from copy import deepcopy
  15. from .inference import PaddlePredictorOption, create_predictor
  16. from .modules import (
  17. build_dataset_checker,
  18. build_evaluator,
  19. build_exportor,
  20. build_trainer,
  21. )
  22. # TODO(gaotingquan): support _ModelBasedConfig
  23. def create_model(model_name, model_dir=None, *args, **kwargs):
  24. return _ModelBasedInference(
  25. model_name=model_name, model_dir=model_dir, *args, **kwargs
  26. )
  27. class _BaseModel:
  28. def check_dataset(self, *args, **kwargs):
  29. raise Exception("check_dataset is not supported!")
  30. def train(self, *args, **kwargs):
  31. raise Exception("train is not supported!")
  32. def evaluate(self, *args, **kwargs):
  33. raise Exception("evaluate is not supported!")
  34. def export(self, *args, **kwargs):
  35. raise Exception("export is not supported!")
  36. def predict(self, *args, **kwargs):
  37. raise Exception("predict is not supported!")
  38. def set_predict(self, *args, **kwargs):
  39. raise Exception("set_predict is not supported!")
  40. def __call__(self, *args, **kwargs):
  41. yield from self.predict(*args, **kwargs)
  42. class _ModelBasedInference(_BaseModel):
  43. def __init__(self, *args, **kwargs):
  44. self._predictor = create_predictor(*args, **kwargs)
  45. def predict(self, *args, **kwargs):
  46. yield from self._predictor(*args, **kwargs)
  47. def set_predictor(self, **kwargs):
  48. self._predictor.set_predictor(**kwargs)
  49. def __getattr__(self, name):
  50. if hasattr(self._predictor, name):
  51. return getattr(self._predictor, name)
  52. raise AttributeError(
  53. f"'{self.__class__.__name__}' object has no attribute '{name}'"
  54. )
  55. class _ModelBasedConfig(_BaseModel):
  56. def __init__(self, config=None, *args, **kwargs):
  57. super().__init__()
  58. self._config = config
  59. self._model_name = config.Global.model
  60. def _build_predictor(self):
  61. predict_kwargs = deepcopy(self._config.Predict)
  62. model_dir = predict_kwargs.pop("model_dir", None)
  63. UNSET = object()
  64. device = self._config.Global.get("device", None)
  65. kernel_option = predict_kwargs.pop("kernel_option", UNSET)
  66. use_hpip = predict_kwargs.pop("use_hpip", UNSET)
  67. hpi_config = predict_kwargs.pop("hpi_config", UNSET)
  68. create_predictor_kwargs = {}
  69. if kernel_option is not UNSET:
  70. kernel_option.setdefault("model_name", self._model_name)
  71. create_predictor_kwargs["pp_option"] = PaddlePredictorOption(
  72. **kernel_option
  73. )
  74. if use_hpip is not UNSET:
  75. create_predictor_kwargs["use_hpip"] = use_hpip
  76. else:
  77. create_predictor_kwargs["use_hpip"] = False
  78. if hpi_config is not UNSET:
  79. create_predictor_kwargs["hpi_config"] = hpi_config
  80. predictor = create_predictor(
  81. self._model_name,
  82. model_dir,
  83. device=device,
  84. **create_predictor_kwargs,
  85. )
  86. assert "input" in predict_kwargs
  87. return predict_kwargs, predictor
  88. def check_dataset(self):
  89. dataset_checker = build_dataset_checker(self._config)
  90. return dataset_checker.check()
  91. def train(self):
  92. trainer = build_trainer(self._config)
  93. trainer.train()
  94. def evaluate(self):
  95. evaluator = build_evaluator(self._config)
  96. return evaluator.evaluate()
  97. def export(self):
  98. exportor = build_exportor(self._config)
  99. return exportor.export()
  100. def predict(self):
  101. predict_kwargs, predictor = self._build_predictor()
  102. yield from predictor(**predict_kwargs)