| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- # copytrue (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- def prune(best_model_path, dataset_path, sensitivities_path, batch_size):
- import paddlex as pdx
- model = pdx.load_model(best_model_path)
- # build coco dataset
- if osp.exists(osp.join(dataset_path, 'JPEGImages')) and \
- osp.exists(osp.join(dataset_path, 'train.json')) and \
- osp.exists(osp.join(dataset_path, 'val.json')):
- data_dir = osp.join(dataset_path, 'JPEGImages')
- eval_ann_file = osp.join(dataset_path, 'val.json')
- eval_dataset = pdx.datasets.CocoDetection(
- data_dir=data_dir,
- ann_file=eval_ann_file,
- transforms=model.test_transforms)
- # build voc
- elif osp.exists(osp.join(dataset_path, 'train_list.txt')) and \
- osp.exists(osp.join(dataset_path, 'val_list.txt')) and \
- osp.exists(osp.join(dataset_path, 'labels.txt')):
- eval_file_list = osp.join(dataset_path, 'val_list.txt')
- label_list = osp.join(dataset_path, 'labels.txt')
- eval_dataset = pdx.datasets.VOCDetection(
- data_dir=dataset_path,
- file_list=eval_file_list,
- label_list=label_list,
- transforms=model.test_transforms)
- model.analyze_sensitivity(
- dataset=eval_dataset,
- batch_size=batch_size,
- criterion='l1_norm',
- save_dir=sensitivities_path)
|