| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import paddlex as pdx
- from paddlex import transforms as T
- # 下载和解压蔬菜分类数据集
- veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
- pdx.utils.download_and_decompress(veg_dataset, path='./')
- # 定义训练和验证时的transforms
- # API说明https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
- train_transforms = T.Compose(
- [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
- eval_transforms = T.Compose([
- T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
- ])
- # 定义训练和验证所用的数据集
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
- train_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/train_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=train_transforms,
- shuffle=True)
- eval_dataset = pdx.datasets.ImageNet(
- data_dir='vegetables_cls',
- file_list='vegetables_cls/val_list.txt',
- label_list='vegetables_cls/labels.txt',
- transforms=eval_transforms)
- # 加载模型
- model = pdx.load_model('output/mobilenet_v2/best_model')
- # Step 1/3: 分析模型各层参数在不同的剪裁比例下的敏感度
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md#analyze_sensitivity
- model.analyze_sensitivity(
- dataset=eval_dataset, save_dir='output/mobilenet_v2/prune')
- # Step 2/3: 根据选择的FLOPs减小比例对模型进行剪裁
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md#prune
- model.prune(pruned_flops=.2)
- # Step 3/3: 对剪裁后的模型重新训练
- # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md#train
- # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/docs/parameters.md
- model.train(
- num_epochs=10,
- train_dataset=train_dataset,
- train_batch_size=32,
- eval_dataset=eval_dataset,
- lr_decay_epochs=[4, 6, 8],
- learning_rate=0.025,
- pretrain_weights=None,
- save_dir='output/mobilenet_v2/prune',
- use_vdl=True)
|