mobilenetv2_qat.py 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. import paddlex as pdx
  2. from paddlex import transforms as T
  3. # 下载和解压蔬菜分类数据集
  4. veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
  5. pdx.utils.download_and_decompress(veg_dataset, path='./')
  6. # 定义训练和验证时的transforms
  7. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py
  8. train_transforms = T.Compose(
  9. [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
  10. eval_transforms = T.Compose([
  11. T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
  12. ])
  13. # 定义训练和验证所用的数据集
  14. # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/imagenet.py#L21
  15. train_dataset = pdx.datasets.ImageNet(
  16. data_dir='vegetables_cls',
  17. file_list='vegetables_cls/train_list.txt',
  18. label_list='vegetables_cls/labels.txt',
  19. transforms=train_transforms,
  20. shuffle=True)
  21. eval_dataset = pdx.datasets.ImageNet(
  22. data_dir='vegetables_cls',
  23. file_list='vegetables_cls/val_list.txt',
  24. label_list='vegetables_cls/labels.txt',
  25. transforms=eval_transforms)
  26. # 加载模型
  27. model = pdx.load_model('output/mobilenet_v2/best_model')
  28. # 在线量化
  29. model.quant_aware_train(
  30. num_epochs=5,
  31. train_dataset=train_dataset,
  32. train_batch_size=32,
  33. eval_dataset=eval_dataset,
  34. learning_rate=0.000025,
  35. save_dir='output/mobilenet_v2/quant',
  36. use_vdl=True)