| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os, sys
- from typing import Any, Dict, Optional, Union, List, Tuple
- import numpy as np
- import cv2
- from ..base import BasePipeline
- from ..components import CropByBoxes, convert_points_to_boxes
- from .result import FormulaRecognitionResult
- from ...models_new.formula_recognition.result import (
- FormulaRecResult as SingleFormulaRecognitionResult,
- )
- from ....utils import logging
- from ...utils.pp_option import PaddlePredictorOption
- from ...common.reader import ReadImage
- from ...common.batch_sampler import ImageBatchSampler
- from ..ocr.result import OCRResult
- from ..doc_preprocessor.result import DocPreprocessorResult
- # [TODO] 待更新models_new到models
- from ...models_new.object_detection.result import DetResult
- class FormulaRecognitionPipeline(BasePipeline):
- """Formula Recognition Pipeline"""
- entities = ["formula_recognition"]
- def __init__(
- self,
- config: Dict,
- device: str = None,
- pp_option: PaddlePredictorOption = None,
- use_hpip: bool = False,
- ) -> None:
- """Initializes the formula recognition pipeline.
- Args:
- config (Dict): Configuration dictionary containing various settings.
- device (str, optional): Device to run the predictions on. Defaults to None.
- pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None.
- use_hpip (bool, optional): Whether to use high-performance inference (hpip) for prediction. Defaults to False.
- """
- super().__init__(device=device, pp_option=pp_option, use_hpip=use_hpip)
- self.use_doc_preprocessor = config.get("use_doc_preprocessor", True)
- if self.use_doc_preprocessor:
- doc_preprocessor_config = config.get("SubPipelines", {}).get(
- "DocPreprocessor",
- {
- "pipeline_config_error": "config error for doc_preprocessor_pipeline!"
- },
- )
- self.doc_preprocessor_pipeline = self.create_pipeline(
- doc_preprocessor_config
- )
- self.use_layout_detection = config.get("use_layout_detection", True)
- if self.use_layout_detection:
- layout_det_config = config.get("SubModules", {}).get(
- "LayoutDetection",
- {"model_config_error": "config error for layout_det_model!"},
- )
- self.layout_det_model = self.create_model(layout_det_config)
- layout_kwargs = {}
- if (threshold := layout_det_config.get("threshold", None)) is not None:
- layout_kwargs["threshold"] = threshold
- if (layout_nms := layout_det_config.get("layout_nms", None)) is not None:
- layout_kwargs["layout_nms"] = layout_nms
- if (
- layout_unclip_ratio := layout_det_config.get(
- "layout_unclip_ratio", None
- )
- ) is not None:
- layout_kwargs["layout_unclip_ratio"] = layout_unclip_ratio
- if (
- layout_merge_bboxes_mode := layout_det_config.get(
- "layout_merge_bboxes_mode", None
- )
- ) is not None:
- layout_kwargs["layout_merge_bboxes_mode"] = layout_merge_bboxes_mode
- self.layout_det_model = self.create_model(
- layout_det_config, **layout_kwargs
- )
- formula_recognition_config = config.get("SubModules", {}).get(
- "FormulaRecognition",
- {"model_config_error": "config error for formula_rec_model!"},
- )
- self.formula_recognition_model = self.create_model(formula_recognition_config)
- self._crop_by_boxes = CropByBoxes()
- self.batch_sampler = ImageBatchSampler(batch_size=1)
- self.img_reader = ReadImage(format="BGR")
- def get_model_settings(
- self,
- use_doc_orientation_classify: Optional[bool],
- use_doc_unwarping: Optional[bool],
- use_layout_detection: Optional[bool],
- ) -> dict:
- """
- Get the model settings based on the provided parameters or default values.
- Args:
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- use_layout_detection (Optional[bool]): Whether to use layout detection.
- Returns:
- dict: A dictionary containing the model settings.
- """
- if use_doc_orientation_classify is None and use_doc_unwarping is None:
- use_doc_preprocessor = self.use_doc_preprocessor
- else:
- if use_doc_orientation_classify is True or use_doc_unwarping is True:
- use_doc_preprocessor = True
- else:
- use_doc_preprocessor = False
- if use_layout_detection is None:
- use_layout_detection = self.use_layout_detection
- return dict(
- use_doc_preprocessor=use_doc_preprocessor,
- use_layout_detection=use_layout_detection,
- )
- def check_model_settings_valid(
- self, model_settings: Dict, layout_det_res: DetResult
- ) -> bool:
- """
- Check if the input parameters are valid based on the initialized models.
- Args:
- model_settings (Dict): A dictionary containing input parameters.
- layout_det_res (DetResult): The layout detection result.
- Returns:
- bool: True if all required models are initialized according to input parameters, False otherwise.
- """
- if model_settings["use_doc_preprocessor"] and not self.use_doc_preprocessor:
- logging.error(
- "Set use_doc_preprocessor, but the models for doc preprocessor are not initialized."
- )
- return False
- if model_settings["use_layout_detection"]:
- if layout_det_res is not None:
- logging.error(
- "The layout detection model has already been initialized, please set use_layout_detection=False"
- )
- return False
- if not self.use_layout_detection:
- logging.error(
- "Set use_layout_detection, but the models for layout detection are not initialized."
- )
- return False
- return True
- def predict_single_formula_recognition_res(
- self,
- image_array: np.ndarray,
- ) -> SingleFormulaRecognitionResult:
- """
- Predict formula recognition results from an image array, layout detection results.
- Args:
- image_array (np.ndarray): The input image represented as a numpy array.
- formula_box (list): The formula box coordinates.
- flag_find_nei_text (bool): Whether to find neighboring text.
- Returns:
- SingleFormulaRecognitionResult: single formula recognition result.
- """
- formula_recognition_pred = next(self.formula_recognition_model(image_array))
- return formula_recognition_pred
- def predict(
- self,
- input: Union[str, List[str], np.ndarray, List[np.ndarray]],
- use_layout_detection: Optional[bool] = None,
- use_doc_orientation_classify: Optional[bool] = None,
- use_doc_unwarping: Optional[bool] = None,
- layout_det_res: Optional[DetResult] = None,
- layout_threshold: Optional[Union[float, dict]] = None,
- layout_nms: Optional[bool] = None,
- layout_unclip_ratio: Optional[Union[float, Tuple[float, float]]] = None,
- layout_merge_bboxes_mode: Optional[str] = None,
- **kwargs,
- ) -> FormulaRecognitionResult:
- """
- This function predicts the layout parsing result for the given input.
- Args:
- input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) of pdf(s) to be processed.
- use_layout_detection (Optional[bool]): Whether to use layout detection.
- use_doc_orientation_classify (Optional[bool]): Whether to use document orientation classification.
- use_doc_unwarping (Optional[bool]): Whether to use document unwarping.
- layout_det_res (Optional[DetResult]): The layout detection result.
- It will be used if it is not None and use_layout_detection is False.
- **kwargs: Additional keyword arguments.
- Returns:
- formulaRecognitionResult: The predicted formula recognition result.
- """
- model_settings = self.get_model_settings(
- use_doc_orientation_classify,
- use_doc_unwarping,
- use_layout_detection,
- )
- if not self.check_model_settings_valid(model_settings, layout_det_res):
- yield {"error": "the input params for model settings are invalid!"}
- for img_id, batch_data in enumerate(self.batch_sampler(input)):
- if not isinstance(batch_data[0], str):
- # TODO: add support input_pth for ndarray and pdf
- input_path = f"{img_id}.jpg"
- else:
- input_path = batch_data[0]
- image_array = self.img_reader(batch_data)[0]
- if model_settings["use_doc_preprocessor"]:
- doc_preprocessor_res = next(
- self.doc_preprocessor_pipeline(
- image_array,
- use_doc_orientation_classify=use_doc_orientation_classify,
- use_doc_unwarping=use_doc_unwarping,
- )
- )
- else:
- doc_preprocessor_res = {"output_img": image_array}
- doc_preprocessor_image = doc_preprocessor_res["output_img"]
- formula_res_list = []
- formula_region_id = 1
- if not model_settings["use_layout_detection"] and layout_det_res is None:
- layout_det_res = {}
- img_height, img_width = doc_preprocessor_image.shape[:2]
- single_formula_rec_res = self.predict_single_formula_recognition_res(
- doc_preprocessor_image,
- )
- single_formula_rec_res["formula_region_id"] = formula_region_id
- formula_res_list.append(single_formula_rec_res)
- formula_region_id += 1
- else:
- if model_settings["use_layout_detection"]:
- layout_det_res = next(
- self.layout_det_model(
- doc_preprocessor_image,
- threshold=layout_threshold,
- layout_nms=layout_nms,
- layout_unclip_ratio=layout_unclip_ratio,
- layout_merge_bboxes_mode=layout_merge_bboxes_mode,
- )
- )
- formula_crop_img = []
- for box_info in layout_det_res["boxes"]:
- if box_info["label"].lower() in ["formula"]:
- crop_img_info = self._crop_by_boxes(
- doc_preprocessor_image, [box_info]
- )
- crop_img_info = crop_img_info[0]
- formula_crop_img.append(crop_img_info["img"])
- single_formula_rec_res = {}
- single_formula_rec_res["formula_region_id"] = formula_region_id
- single_formula_rec_res["dt_polys"] = box_info["coordinate"]
- formula_res_list.append(single_formula_rec_res)
- formula_region_id += 1
- for idx, formula_rec_res in enumerate(
- self.formula_recognition_model(formula_crop_img)
- ):
- formula_region_id = formula_res_list[idx]["formula_region_id"]
- dt_polys = formula_res_list[idx]["dt_polys"]
- formula_rec_res["formula_region_id"] = formula_region_id
- formula_rec_res["dt_polys"] = dt_polys
- formula_res_list[idx] = formula_rec_res
- single_img_res = {
- "input_path": input_path,
- "layout_det_res": layout_det_res,
- "doc_preprocessor_res": doc_preprocessor_res,
- "formula_res_list": formula_res_list,
- "model_settings": model_settings,
- }
- yield FormulaRecognitionResult(single_img_res)
|