PaddleX 支持统计模型推理耗时,需通过环境变量进行设置,具体如下:
PADDLE_PDX_INFER_BENCHMARK:设置为 True 时则开启 Benchmark,默认为 False;PADDLE_PDX_INFER_BENCHMARK_WARMUP:设置 warm up,在开始测试前,使用随机数据循环迭代 n 次,默认为 0;PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE: 设置随机数据的尺寸,默认为 224;PADDLE_PDX_INFER_BENCHMARK_ITER:使用随机数据进行 Benchmark 测试的循环次数,仅当输入数据为 None 时,将使用随机数据进行测试;PADDLE_PDX_INFER_BENCHMARK_OUTPUT:用于设置保存本次 benchmark 指标到 txt 文件,如 ./benchmark.txt,默认为 None,表示不保存 Benchmark 指标;使用示例如下:
PADDLE_PDX_INFER_BENCHMARK=True \
PADDLE_PDX_INFER_BENCHMARK_WARMUP=5 \
PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE=320 \
PADDLE_PDX_INFER_BENCHMARK_ITER=10 \
PADDLE_PDX_INFER_BENCHMARK_OUTPUT=./benchmark.txt \
python main.py \
-c ./paddlex/configs/object_detection/PicoDet-XS.yaml \
-o Global.mode=predict \
-o Predict.model_dir=None \
-o Predict.input=None
在开启 Benchmark 后,将自动打印 benchmark 指标:
+----------------+-----------------+------+---------------+
| Stage | Total Time (ms) | Nums | Avg Time (ms) |
+----------------+-----------------+------+---------------+
| ReadCmp | 185.48870087 | 10 | 18.54887009 |
| Resize | 16.95227623 | 30 | 0.56507587 |
| Normalize | 41.12100601 | 30 | 1.37070020 |
| ToCHWImage | 0.05745888 | 30 | 0.00191530 |
| Copy2GPU | 14.58549500 | 10 | 1.45854950 |
| Infer | 100.14462471 | 10 | 10.01446247 |
| Copy2CPU | 9.54508781 | 10 | 0.95450878 |
| DetPostProcess | 0.56767464 | 30 | 0.01892249 |
+----------------+-----------------+------+---------------+
+-------------+-----------------+------+---------------+
| Stage | Total Time (ms) | Nums | Avg Time (ms) |
+-------------+-----------------+------+---------------+
| PreProcess | 243.61944199 | 30 | 8.12064807 |
| Inference | 124.27520752 | 30 | 4.14250692 |
| PostProcess | 0.56767464 | 30 | 0.01892249 |
| End2End | 379.70948219 | 30 | 12.65698274 |
| WarmUp | 9465.68179131 | 5 | 1893.13635826 |
+-------------+-----------------+------+---------------+
在 Benchmark 结果中,会统计该模型全部组件(Component)的总耗时(Total Time,单位为“毫秒”)、调用次数(Nums)、调用平均执行耗时(Avg Time,单位为“毫秒”),以及按预热(WarmUp)、预处理(PreProcess)、模型推理(Inference)、后处理(PostProcess)和端到端(End2End)进行划分的耗时统计,包括每个阶段的总耗时(Total Time,单位为“毫秒”)、样本数(Nums)和单样本平均执行耗时(Avg Time,单位为“毫秒”),同时,保存相关指标会到本地 ./benchmark.csv 文件中:
Stage,Total Time (ms),Nums,Avg Time (ms)
ReadCmp,0.18548870086669922,10,0.018548870086669923
Resize,0.0169522762298584,30,0.0005650758743286133
Normalize,0.04112100601196289,30,0.001370700200398763
ToCHWImage,5.745887756347656e-05,30,1.915295918782552e-06
Copy2GPU,0.014585494995117188,10,0.0014585494995117188
Infer,0.10014462471008301,10,0.0100144624710083
Copy2CPU,0.009545087814331055,10,0.0009545087814331055
DetPostProcess,0.0005676746368408203,30,1.892248789469401e-05
PreProcess,0.24361944198608398,30,0.0081206480662028
Inference,0.12427520751953125,30,0.0041425069173177086
PostProcess,0.0005676746368408203,30,1.892248789469401e-05
End2End,0.37970948219299316,30,0.012656982739766438
WarmUp,9.465681791305542,5,1.8931363582611085