model.cc 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "ultra_infer/vision/classification/ppcls/model.h"
  15. #include "ultra_infer/utils/unique_ptr.h"
  16. namespace ultra_infer {
  17. namespace vision {
  18. namespace classification {
  19. PaddleClasModel::PaddleClasModel(const std::string &model_file,
  20. const std::string &params_file,
  21. const std::string &config_file,
  22. const RuntimeOption &custom_option,
  23. const ModelFormat &model_format)
  24. : preprocessor_(config_file) {
  25. if (model_format == ModelFormat::PADDLE) {
  26. valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT,
  27. Backend::LITE};
  28. valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
  29. valid_timvx_backends = {Backend::LITE};
  30. valid_ascend_backends = {Backend::LITE};
  31. valid_kunlunxin_backends = {Backend::LITE};
  32. valid_ipu_backends = {Backend::PDINFER};
  33. valid_directml_backends = {Backend::ORT};
  34. } else if (model_format == ModelFormat::SOPHGO) {
  35. valid_sophgonpu_backends = {Backend::SOPHGOTPU};
  36. } else {
  37. valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
  38. valid_gpu_backends = {Backend::ORT, Backend::TRT};
  39. valid_rknpu_backends = {Backend::RKNPU2};
  40. valid_directml_backends = {Backend::ORT};
  41. valid_horizon_backends = {Backend::HORIZONNPU};
  42. }
  43. runtime_option = custom_option;
  44. runtime_option.model_format = model_format;
  45. runtime_option.model_file = model_file;
  46. runtime_option.params_file = params_file;
  47. initialized = Initialize();
  48. }
  49. std::unique_ptr<PaddleClasModel> PaddleClasModel::Clone() const {
  50. std::unique_ptr<PaddleClasModel> clone_model =
  51. utils::make_unique<PaddleClasModel>(PaddleClasModel(*this));
  52. clone_model->SetRuntime(clone_model->CloneRuntime());
  53. return clone_model;
  54. }
  55. bool PaddleClasModel::Initialize() {
  56. if (!InitRuntime()) {
  57. FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
  58. return false;
  59. }
  60. return true;
  61. }
  62. bool PaddleClasModel::Predict(cv::Mat *im, ClassifyResult *result, int topk) {
  63. postprocessor_.SetTopk(topk);
  64. if (!Predict(*im, result)) {
  65. return false;
  66. }
  67. return true;
  68. }
  69. bool PaddleClasModel::Predict(const cv::Mat &im, ClassifyResult *result) {
  70. FDMat mat = WrapMat(im);
  71. return Predict(mat, result);
  72. }
  73. bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat> &images,
  74. std::vector<ClassifyResult> *results) {
  75. std::vector<FDMat> mats = WrapMat(images);
  76. return BatchPredict(mats, results);
  77. }
  78. bool PaddleClasModel::Predict(const FDMat &mat, ClassifyResult *result) {
  79. std::vector<ClassifyResult> results;
  80. std::vector<FDMat> mats = {mat};
  81. if (!BatchPredict(mats, &results)) {
  82. return false;
  83. }
  84. *result = std::move(results[0]);
  85. return true;
  86. }
  87. bool PaddleClasModel::BatchPredict(const std::vector<FDMat> &mats,
  88. std::vector<ClassifyResult> *results) {
  89. std::vector<FDMat> fd_mats = mats;
  90. if (!preprocessor_.Run(&fd_mats, &reused_input_tensors_)) {
  91. FDERROR << "Failed to preprocess the input image." << std::endl;
  92. return false;
  93. }
  94. reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
  95. if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
  96. FDERROR << "Failed to inference by runtime." << std::endl;
  97. return false;
  98. }
  99. if (!postprocessor_.Run(reused_output_tensors_, results)) {
  100. FDERROR << "Failed to postprocess the inference results by runtime."
  101. << std::endl;
  102. return false;
  103. }
  104. return true;
  105. }
  106. } // namespace classification
  107. } // namespace vision
  108. } // namespace ultra_infer