| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/classification/ppshitu/ppshituv2_rec_postprocessor.h"
- #include "ultra_infer/vision/classification/ppshitu/ppshituv2_rec_preprocessor.h"
- namespace ultra_infer {
- namespace vision {
- namespace classification {
- /*! @brief PPShiTuV2Recognizer model object used when to load a
- * PPShiTuV2Recognizer model exported by PP-ShiTuV2 Rec model.
- */
- class ULTRAINFER_DECL PPShiTuV2Recognizer : public UltraInferModel {
- public:
- /** \brief Set path of model file and configuration file, and the
- * configuration of runtime
- *
- * \param[in] model_file Path of model file, e.g PPLCNet/inference.pdmodel
- * \param[in] params_file Path of parameter file, e.g
- * PPLCNet/inference.pdiparams, if the model format is ONNX, this parameter
- * will be ignored \param[in] config_file Path of configuration file for
- * deployment, e.g PPLCNet/inference_cls.yml \param[in] custom_option
- * RuntimeOption for inference, the default will use cpu, and choose the
- * backend defined in `valid_cpu_backends` \param[in] model_format Model
- * format of the loaded model, default is Paddle format
- */
- PPShiTuV2Recognizer(const std::string &model_file,
- const std::string ¶ms_file,
- const std::string &config_file,
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::PADDLE);
- /** \brief Clone a new PPShiTuV2Recognizer with less memory usage when
- * multiple instances of the same model are created
- *
- * \return new PPShiTuV2Recognizer* type unique pointer
- */
- virtual std::unique_ptr<PPShiTuV2Recognizer> Clone() const;
- /// Get model's name
- virtual std::string ModelName() const { return "PPShiTuV2Recognizer"; }
- /** \brief DEPRECATED Predict the feature vector result for an input image,
- * remove at 1.0 version
- *
- * \param[in] im The input image data, comes from cv::imread()
- * \param[in] result The output feature vector result will be written to this
- * structure \return true if the prediction succeeded, otherwise false
- */
- virtual bool Predict(cv::Mat *im, ClassifyResult *result);
- /** \brief Predict the classification result for an input image
- *
- * \param[in] img The input image data, comes from cv::imread()
- * \param[in] result The output feature vector result
- * \return true if the prediction succeeded, otherwise false
- */
- virtual bool Predict(const cv::Mat &img, ClassifyResult *result);
- /** \brief Predict the feature vector results for a batch of input images
- *
- * \param[in] imgs, The input image list, each element comes from cv::imread()
- * \param[in] results The output feature vector(namely ClassifyResult.feature)
- * result list \return true if the prediction succeeded, otherwise false
- */
- virtual bool BatchPredict(const std::vector<cv::Mat> &imgs,
- std::vector<ClassifyResult> *results);
- /** \brief Predict the feature vector result for an input image
- *
- * \param[in] mat The input mat
- * \param[in] result The output feature vector result
- * \return true if the prediction succeeded, otherwise false
- */
- virtual bool Predict(const FDMat &mat, ClassifyResult *result);
- /** \brief Predict the feature vector results for a batch of input images
- *
- * \param[in] mats, The input mat list
- * \param[in] results The output feature vector result list
- * \return true if the prediction succeeded, otherwise false
- */
- virtual bool BatchPredict(const std::vector<FDMat> &mats,
- std::vector<ClassifyResult> *results);
- /// Get preprocessor reference of PPShiTuV2Recognizer
- virtual PPShiTuV2RecognizerPreprocessor &GetPreprocessor() {
- return preprocessor_;
- }
- /// Get postprocessor reference of PPShiTuV2Recognizer
- virtual PPShiTuV2RecognizerPostprocessor &GetPostprocessor() {
- return postprocessor_;
- }
- protected:
- bool Initialize();
- PPShiTuV2RecognizerPreprocessor preprocessor_;
- PPShiTuV2RecognizerPostprocessor postprocessor_;
- };
- } // namespace classification
- } // namespace vision
- } // namespace ultra_infer
|