| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifdef WITH_GPU
- #include "ultra_infer/vision/common/processors/normalize.h"
- namespace ultra_infer {
- namespace vision {
- __global__ void NormalizeKernel(const uint8_t *src, float *dst,
- const float *alpha, const float *beta,
- int num_channel, bool swap_rb, int batch_size,
- int edge) {
- int idx = blockDim.x * blockIdx.x + threadIdx.x;
- if (idx >= edge)
- return;
- int img_size = edge / batch_size;
- int n = idx / img_size; // batch index
- int p = idx - (n * img_size); // pixel index within the image
- for (int i = 0; i < num_channel; ++i) {
- int j = i;
- if (swap_rb) {
- j = 2 - i;
- }
- dst[num_channel * idx + j] =
- src[num_channel * idx + j] * alpha[i] + beta[i];
- }
- }
- bool Normalize::ImplByCuda(FDMat *mat) {
- if (mat->layout != Layout::HWC) {
- FDERROR << "The input data must be NHWC format!" << std::endl;
- return false;
- }
- // Prepare input tensor
- FDTensor *src = CreateCachedGpuInputTensor(mat);
- src->ExpandDim(0);
- FDMatBatch mat_batch;
- mat_batch.SetTensor(src);
- mat_batch.mat_type = ProcLib::CUDA;
- mat_batch.input_cache = mat->input_cache;
- mat_batch.output_cache = mat->output_cache;
- bool ret = ImplByCuda(&mat_batch);
- FDTensor *dst = mat_batch.Tensor();
- dst->Squeeze(0);
- mat->SetTensor(dst);
- mat->mat_type = ProcLib::CUDA;
- return true;
- }
- bool Normalize::ImplByCuda(FDMatBatch *mat_batch) {
- if (mat_batch->layout != FDMatBatchLayout::NHWC) {
- FDERROR << "The input data must be NHWC format!" << std::endl;
- return false;
- }
- // Prepare input tensor
- FDTensor *src = CreateCachedGpuInputTensor(mat_batch);
- // Prepare output tensor
- mat_batch->output_cache->Resize(src->Shape(), FDDataType::FP32,
- "batch_output_cache", Device::GPU);
- // Copy alpha and beta to GPU
- gpu_alpha_.Resize({1, 1, static_cast<int>(alpha_.size())}, FDDataType::FP32,
- "alpha", Device::GPU);
- cudaMemcpy(gpu_alpha_.Data(), alpha_.data(), gpu_alpha_.Nbytes(),
- cudaMemcpyHostToDevice);
- gpu_beta_.Resize({1, 1, static_cast<int>(beta_.size())}, FDDataType::FP32,
- "beta", Device::GPU);
- cudaMemcpy(gpu_beta_.Data(), beta_.data(), gpu_beta_.Nbytes(),
- cudaMemcpyHostToDevice);
- int jobs =
- mat_batch->output_cache->Numel() / mat_batch->output_cache->shape[3];
- int threads = 256;
- int blocks = ceil(jobs / (float)threads);
- NormalizeKernel<<<blocks, threads, 0, mat_batch->Stream()>>>(
- reinterpret_cast<uint8_t *>(src->Data()),
- reinterpret_cast<float *>(mat_batch->output_cache->Data()),
- reinterpret_cast<float *>(gpu_alpha_.Data()),
- reinterpret_cast<float *>(gpu_beta_.Data()),
- mat_batch->output_cache->shape[3], swap_rb_,
- mat_batch->output_cache->shape[0], jobs);
- mat_batch->SetTensor(mat_batch->output_cache);
- mat_batch->mat_type = ProcLib::CUDA;
- return true;
- }
- #ifdef ENABLE_CVCUDA
- bool Normalize::ImplByCvCuda(FDMat *mat) { return ImplByCuda(mat); }
- bool Normalize::ImplByCvCuda(FDMatBatch *mat_batch) {
- return ImplByCuda(mat_batch);
- }
- #endif
- } // namespace vision
- } // namespace ultra_infer
- #endif
|