| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/common/processors/stride_pad.h"
- namespace ultra_infer {
- namespace vision {
- bool StridePad::ImplByOpenCV(Mat *mat) {
- if (mat->layout != Layout::HWC) {
- FDERROR << "StridePad: The input data must be Layout::HWC format!"
- << std::endl;
- return false;
- }
- if (mat->Channels() > 4) {
- FDERROR << "StridePad: Only support channels <= 4." << std::endl;
- return false;
- }
- if (mat->Channels() != value_.size()) {
- FDERROR
- << "StridePad: Require input channels equals to size of padding value, "
- "but now channels = "
- << mat->Channels() << ", the size of padding values = " << value_.size()
- << "." << std::endl;
- return false;
- }
- int origin_w = mat->Width();
- int origin_h = mat->Height();
- int pad_h = (mat->Height() / stride_) * stride_ +
- (mat->Height() % stride_ != 0) * stride_ - mat->Height();
- int pad_w = (mat->Width() / stride_) * stride_ +
- (mat->Width() % stride_ != 0) * stride_ - mat->Width();
- if (pad_h == 0 && pad_w == 0) {
- return true;
- }
- cv::Mat *im = mat->GetOpenCVMat();
- cv::Scalar value;
- if (value_.size() == 1) {
- value = cv::Scalar(value_[0]);
- } else if (value_.size() == 2) {
- value = cv::Scalar(value_[0], value_[1]);
- } else if (value_.size() == 3) {
- value = cv::Scalar(value_[0], value_[1], value_[2]);
- } else {
- value = cv::Scalar(value_[0], value_[1], value_[2], value_[3]);
- }
- // top, bottom, left, right
- cv::copyMakeBorder(*im, *im, 0, pad_h, 0, pad_w, cv::BORDER_CONSTANT, value);
- mat->SetHeight(origin_h + pad_h);
- mat->SetWidth(origin_w + pad_w);
- return true;
- }
- #ifdef ENABLE_FLYCV
- bool StridePad::ImplByFlyCV(Mat *mat) {
- if (mat->layout != Layout::HWC) {
- FDERROR << "StridePad: The input data must be Layout::HWC format!"
- << std::endl;
- return false;
- }
- if (mat->Channels() > 4) {
- FDERROR << "StridePad: Only support channels <= 4." << std::endl;
- return false;
- }
- if (mat->Channels() != value_.size()) {
- FDERROR
- << "StridePad: Require input channels equals to size of padding value, "
- "but now channels = "
- << mat->Channels() << ", the size of padding values = " << value_.size()
- << "." << std::endl;
- return false;
- }
- int origin_w = mat->Width();
- int origin_h = mat->Height();
- int pad_h = (mat->Height() / stride_) * stride_ +
- (mat->Height() % stride_ != 0) * stride_ - mat->Height();
- int pad_w = (mat->Width() / stride_) * stride_ +
- (mat->Width() % stride_ != 0) * stride_ - mat->Width();
- if (pad_h == 0 && pad_w == 0) {
- return true;
- }
- fcv::Mat *im = mat->GetFlyCVMat();
- fcv::Scalar value;
- if (value_.size() == 1) {
- value = fcv::Scalar(value_[0]);
- } else if (value_.size() == 2) {
- value = fcv::Scalar(value_[0], value_[1]);
- } else if (value_.size() == 3) {
- value = fcv::Scalar(value_[0], value_[1], value_[2]);
- } else {
- value = fcv::Scalar(value_[0], value_[1], value_[2], value_[3]);
- }
- fcv::Mat new_im;
- // top, bottom, left, right
- fcv::copy_make_border(*im, new_im, 0, pad_h, 0, pad_w,
- fcv::BorderType::BORDER_CONSTANT, value);
- mat->SetMat(new_im);
- mat->SetHeight(new_im.height());
- mat->SetWidth(new_im.width());
- return true;
- }
- #endif
- #ifdef ENABLE_CVCUDA
- bool StridePad::ImplByCvCuda(FDMat *mat) {
- if (mat->layout != Layout::HWC) {
- FDERROR << "StridePad: The input data must be Layout::HWC format!"
- << std::endl;
- return false;
- }
- if (mat->Channels() > 4) {
- FDERROR << "StridePad: Only support channels <= 4." << std::endl;
- return false;
- }
- if (mat->Channels() != value_.size()) {
- FDERROR
- << "StridePad: Require input channels equals to size of padding value, "
- "but now channels = "
- << mat->Channels() << ", the size of padding values = " << value_.size()
- << "." << std::endl;
- return false;
- }
- int origin_w = mat->Width();
- int origin_h = mat->Height();
- int pad_h = (mat->Height() / stride_) * stride_ +
- (mat->Height() % stride_ != 0) * stride_ - mat->Height();
- int pad_w = (mat->Width() / stride_) * stride_ +
- (mat->Width() % stride_ != 0) * stride_ - mat->Width();
- if (pad_h == 0 && pad_w == 0) {
- return true;
- }
- float4 value;
- if (value_.size() == 1) {
- value = make_float4(value_[0], 0.0f, 0.0f, 0.0f);
- } else if (value_.size() == 2) {
- value = make_float4(value_[0], value_[1], 0.0f, 0.0f);
- } else if (value_.size() == 3) {
- value = make_float4(value_[0], value_[1], value_[2], 0.0f);
- } else {
- value = make_float4(value_[0], value_[1], value_[2], value_[3]);
- }
- // Prepare input tensor
- FDTensor *src = CreateCachedGpuInputTensor(mat);
- auto src_tensor = CreateCvCudaTensorWrapData(*src);
- int height = mat->Height() + pad_h;
- int width = mat->Width() + pad_w;
- // Prepare output tensor
- mat->output_cache->Resize({height, width, mat->Channels()}, mat->Type(),
- "output_cache", Device::GPU);
- auto dst_tensor = CreateCvCudaTensorWrapData(*(mat->output_cache));
- cvcuda_pad_op_(mat->Stream(), *src_tensor, *dst_tensor, 0, 0,
- NVCV_BORDER_CONSTANT, value);
- mat->SetTensor(mat->output_cache);
- mat->mat_type = ProcLib::CVCUDA;
- return true;
- }
- #endif
- bool StridePad::Run(Mat *mat, int stride, const std::vector<float> &value,
- ProcLib lib) {
- auto p = StridePad(stride, value);
- return p(mat, lib);
- }
- } // namespace vision
- } // namespace ultra_infer
|