| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- namespace ultra_infer {
- namespace vision {
- namespace facealign {
- /*! @brief FaceLandmark1000 model object used when to load a FaceLandmark1000
- * model exported by FaceLandmark1000.
- */
- class ULTRAINFER_DECL FaceLandmark1000 : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./face_landmarks_1000.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- FaceLandmark1000(const std::string &model_file,
- const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- std::string ModelName() const { return "FaceLandmark1000"; }
- /** \brief Predict the face detection result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result The output face detection
- * result will be written to this structure \return true if the prediction
- * succeeded, otherwise false
- */
- virtual bool Predict(cv::Mat *im, FaceAlignmentResult *result);
- /** \brief Get the input size of image
- *
- * \return Vector of int values, default {128,128}
- */
- std::vector<int> GetSize() { return size_; }
- /** \brief Set the input size of image
- *
- * \param[in] size Vector of int values which represents {width, height} of
- * image
- */
- void SetSize(const std::vector<int> &size) { size_ = size; }
- private:
- bool Initialize();
- bool Preprocess(Mat *mat, FDTensor *outputs,
- std::map<std::string, std::array<int, 2>> *im_info);
- bool Postprocess(FDTensor &infer_result, FaceAlignmentResult *result,
- const std::map<std::string, std::array<int, 2>> &im_info);
- // tuple of (width, height), default (128, 128)
- std::vector<int> size_;
- };
- } // namespace facealign
- } // namespace vision
- } // namespace ultra_infer
|