face_landmark_1000.h 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #pragma once
  15. #include "ultra_infer/ultra_infer_model.h"
  16. #include "ultra_infer/vision/common/processors/transform.h"
  17. #include "ultra_infer/vision/common/result.h"
  18. namespace ultra_infer {
  19. namespace vision {
  20. namespace facealign {
  21. /*! @brief FaceLandmark1000 model object used when to load a FaceLandmark1000
  22. * model exported by FaceLandmark1000.
  23. */
  24. class ULTRAINFER_DECL FaceLandmark1000 : public UltraInferModel {
  25. public:
  26. /** \brief Set path of model file and the configuration of runtime.
  27. *
  28. * \param[in] model_file Path of model file, e.g ./face_landmarks_1000.onnx
  29. * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
  30. * if the model format is ONNX, this parameter will be ignored \param[in]
  31. * custom_option RuntimeOption for inference, the default will use cpu, and
  32. * choose the backend defined in "valid_cpu_backends" \param[in] model_format
  33. * Model format of the loaded model, default is ONNX format
  34. */
  35. FaceLandmark1000(const std::string &model_file,
  36. const std::string &params_file = "",
  37. const RuntimeOption &custom_option = RuntimeOption(),
  38. const ModelFormat &model_format = ModelFormat::ONNX);
  39. std::string ModelName() const { return "FaceLandmark1000"; }
  40. /** \brief Predict the face detection result for an input image
  41. *
  42. * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
  43. * with layout HWC, BGR format \param[in] result The output face detection
  44. * result will be written to this structure \return true if the prediction
  45. * succeeded, otherwise false
  46. */
  47. virtual bool Predict(cv::Mat *im, FaceAlignmentResult *result);
  48. /** \brief Get the input size of image
  49. *
  50. * \return Vector of int values, default {128,128}
  51. */
  52. std::vector<int> GetSize() { return size_; }
  53. /** \brief Set the input size of image
  54. *
  55. * \param[in] size Vector of int values which represents {width, height} of
  56. * image
  57. */
  58. void SetSize(const std::vector<int> &size) { size_ = size; }
  59. private:
  60. bool Initialize();
  61. bool Preprocess(Mat *mat, FDTensor *outputs,
  62. std::map<std::string, std::array<int, 2>> *im_info);
  63. bool Postprocess(FDTensor &infer_result, FaceAlignmentResult *result,
  64. const std::map<std::string, std::array<int, 2>> &im_info);
  65. // tuple of (width, height), default (128, 128)
  66. std::vector<int> size_;
  67. };
  68. } // namespace facealign
  69. } // namespace vision
  70. } // namespace ultra_infer