| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/facedet/contrib/retinaface.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace facedet {
- struct RetinaAnchor {
- float cx;
- float cy;
- float s_kx;
- float s_ky;
- };
- void GenerateRetinaAnchors(const std::vector<int> &size,
- const std::vector<int> &downsample_strides,
- const std::vector<std::vector<int>> &min_sizes,
- std::vector<RetinaAnchor> *anchors) {
- // size: tuple of input (width, height)
- // downsample_strides: downsample strides (steps), e.g (8,16,32)
- // min_sizes: width and height for each anchor,
- // e.g {{16, 32}, {64, 128}, {256, 512}}
- int h = size[1];
- int w = size[0];
- std::vector<std::vector<int>> feature_maps;
- for (auto s : downsample_strides) {
- feature_maps.push_back(
- {static_cast<int>(
- std::ceil(static_cast<float>(h) / static_cast<float>(s))),
- static_cast<int>(
- std::ceil(static_cast<float>(w) / static_cast<float>(s)))});
- }
- (*anchors).clear();
- const size_t num_feature_map = feature_maps.size();
- // reference: layers/functions/prior_box.py#L21
- for (size_t k = 0; k < num_feature_map; ++k) {
- auto f_map = feature_maps.at(k); // e.g [640//8,640//8]
- auto tmp_min_sizes = min_sizes.at(k); // e.g [8,16]
- int f_h = f_map.at(0);
- int f_w = f_map.at(1);
- for (size_t i = 0; i < f_h; ++i) {
- for (size_t j = 0; j < f_w; ++j) {
- for (auto min_size : tmp_min_sizes) {
- float s_kx =
- static_cast<float>(min_size) / static_cast<float>(w); // e.g 16/w
- float s_ky =
- static_cast<float>(min_size) / static_cast<float>(h); // e.g 16/h
- // (x + 0.5) * step / w normalized loc mapping to input width
- // (y + 0.5) * step / h normalized loc mapping to input height
- float s = static_cast<float>(downsample_strides.at(k));
- float cx = (static_cast<float>(j) + 0.5f) * s / static_cast<float>(w);
- float cy = (static_cast<float>(i) + 0.5f) * s / static_cast<float>(h);
- (*anchors).emplace_back(
- RetinaAnchor{cx, cy, s_kx, s_ky}); // without clip
- }
- }
- }
- }
- }
- RetinaFace::RetinaFace(const std::string &model_file,
- const std::string ¶ms_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- if (model_format == ModelFormat::ONNX) {
- valid_cpu_backends = {Backend::ORT};
- valid_gpu_backends = {Backend::ORT, Backend::TRT};
- } else {
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- }
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool RetinaFace::Initialize() {
- // parameters for preprocess
- size = {640, 640};
- variance = {0.1f, 0.2f};
- downsample_strides = {8, 16, 32};
- min_sizes = {{16, 32}, {64, 128}, {256, 512}};
- landmarks_per_face = 5;
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- // Check if the input shape is dynamic after Runtime already initialized,
- is_dynamic_input_ = false;
- auto shape = InputInfoOfRuntime(0).shape;
- for (int i = 0; i < shape.size(); ++i) {
- // if height or width is dynamic
- if (i >= 2 && shape[i] <= 0) {
- is_dynamic_input_ = true;
- break;
- }
- }
- return true;
- }
- bool RetinaFace::Preprocess(
- Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info) {
- // retinaface's preprocess steps
- // 1. Resize
- // 2. Convert(opencv style) or Normalize
- // 3. HWC->CHW
- int resize_w = size[0];
- int resize_h = size[1];
- if (resize_h != mat->Height() || resize_w != mat->Width()) {
- Resize::Run(mat, resize_w, resize_h);
- }
- // Compute `result = mat * alpha + beta` directly by channel
- // Reference: detect.py#L94
- std::vector<float> alpha = {1.f, 1.f, 1.f};
- std::vector<float> beta = {-104.f, -117.f, -123.f}; // BGR;
- Convert::Run(mat, alpha, beta);
- // Record output shape of preprocessed image
- (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
- static_cast<float>(mat->Width())};
- HWC2CHW::Run(mat);
- Cast::Run(mat, "float");
- mat->ShareWithTensor(output);
- output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
- return true;
- }
- bool RetinaFace::Postprocess(
- std::vector<FDTensor> &infer_result, FaceDetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold) {
- // retinaface has 3 output tensors, boxes & conf & landmarks
- FDASSERT(
- (infer_result.size() == 3),
- "The default number of output tensor must be 3 according to retinaface.");
- FDTensor &boxes_tensor = infer_result.at(0); // (1,n,4)
- FDTensor &conf_tensor = infer_result.at(1); // (1,n,2)
- FDTensor &landmarks_tensor = infer_result.at(2); // (1,n,10)
- FDASSERT((boxes_tensor.shape[0] == 1), "Only support batch =1 now.");
- if (boxes_tensor.dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- result->Clear();
- // must be setup landmarks_per_face before reserve
- result->landmarks_per_face = landmarks_per_face;
- result->Reserve(boxes_tensor.shape[1]);
- float *boxes_ptr = static_cast<float *>(boxes_tensor.Data());
- float *conf_ptr = static_cast<float *>(conf_tensor.Data());
- float *landmarks_ptr = static_cast<float *>(landmarks_tensor.Data());
- const size_t num_bboxes = boxes_tensor.shape[1]; // n
- // fetch original image shape
- auto iter_ipt = im_info.find("input_shape");
- FDASSERT((iter_ipt != im_info.end()),
- "Cannot find input_shape from im_info.");
- float ipt_h = iter_ipt->second[0];
- float ipt_w = iter_ipt->second[1];
- // generate anchors with dowmsample strides
- std::vector<RetinaAnchor> anchors;
- GenerateRetinaAnchors(size, downsample_strides, min_sizes, &anchors);
- // decode bounding boxes
- for (size_t i = 0; i < num_bboxes; ++i) {
- float confidence = conf_ptr[2 * i + 1];
- // filter boxes by conf_threshold
- if (confidence <= conf_threshold) {
- continue;
- }
- float prior_cx = anchors.at(i).cx;
- float prior_cy = anchors.at(i).cy;
- float prior_s_kx = anchors.at(i).s_kx;
- float prior_s_ky = anchors.at(i).s_ky;
- // fetch offsets (dx,dy,dw,dh)
- float dx = boxes_ptr[4 * i + 0];
- float dy = boxes_ptr[4 * i + 1];
- float dw = boxes_ptr[4 * i + 2];
- float dh = boxes_ptr[4 * i + 3];
- // reference: Pytorch_Retinaface/utils/box_utils.py
- float x = prior_cx + dx * variance[0] * prior_s_kx;
- float y = prior_cy + dy * variance[0] * prior_s_ky;
- float w = prior_s_kx * std::exp(dw * variance[1]);
- float h = prior_s_ky * std::exp(dh * variance[1]); // (0.~1.)
- // from (x,y,w,h) to (x1,y1,x2,y2)
- float x1 = (x - w / 2.f) * ipt_w;
- float y1 = (y - h / 2.f) * ipt_h;
- float x2 = (x + w / 2.f) * ipt_w;
- float y2 = (y + h / 2.f) * ipt_h;
- result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
- result->scores.push_back(confidence);
- // decode landmarks (default 5 landmarks)
- if (landmarks_per_face > 0) {
- // reference: utils/box_utils.py#L241
- for (size_t j = 0; j < landmarks_per_face * 2; j += 2) {
- float ldx = landmarks_ptr[i * (landmarks_per_face * 2) + (j + 0)];
- float ldy = landmarks_ptr[i * (landmarks_per_face * 2) + (j + 1)];
- float lx = (prior_cx + ldx * variance[0] * prior_s_kx) * ipt_w;
- float ly = (prior_cy + ldy * variance[0] * prior_s_ky) * ipt_h;
- result->landmarks.emplace_back(std::array<float, 2>{lx, ly});
- }
- }
- }
- if (result->boxes.size() == 0) {
- return true;
- }
- utils::NMS(result, nms_iou_threshold);
- // scale and clip box
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f);
- result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f);
- result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f);
- result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f);
- result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
- result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
- result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
- result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
- }
- // scale and clip landmarks
- for (size_t i = 0; i < result->landmarks.size(); ++i) {
- result->landmarks[i][0] = std::max(result->landmarks[i][0], 0.0f);
- result->landmarks[i][1] = std::max(result->landmarks[i][1], 0.0f);
- result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
- result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
- }
- return true;
- }
- bool RetinaFace::Predict(cv::Mat *im, FaceDetectionResult *result,
- float conf_threshold, float nms_iou_threshold) {
- Mat mat(*im);
- std::vector<FDTensor> input_tensors(1);
- std::map<std::string, std::array<float, 2>> im_info;
- // Record the shape of image and the shape of preprocessed image
- im_info["input_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- im_info["output_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
- FDERROR << "Failed to preprocess input image." << std::endl;
- return false;
- }
- input_tensors[0].name = InputInfoOfRuntime(0).name;
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors, result, im_info, conf_threshold,
- nms_iou_threshold)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- } // namespace facedet
- } // namespace vision
- } // namespace ultra_infer
|