| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/facedet/contrib/scrfd.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace facedet {
- void SCRFD::LetterBox(Mat *mat, const std::vector<int> &size,
- const std::vector<float> &color, bool _auto,
- bool scale_fill, bool scale_up, int stride) {
- float scale =
- std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
- if (!scale_up) {
- scale = std::min(scale, 1.0f);
- }
- int resize_h = int(round(mat->Height() * scale));
- int resize_w = int(round(mat->Width() * scale));
- int pad_w = size[0] - resize_w;
- int pad_h = size[1] - resize_h;
- if (_auto) {
- pad_h = pad_h % stride;
- pad_w = pad_w % stride;
- } else if (scale_fill) {
- pad_h = 0;
- pad_w = 0;
- resize_h = size[1];
- resize_w = size[0];
- }
- if (resize_h != mat->Height() || resize_w != mat->Width()) {
- Resize::Run(mat, resize_w, resize_h);
- }
- if (pad_h > 0 || pad_w > 0) {
- float half_h = pad_h * 1.0 / 2;
- int top = int(round(half_h - 0.1));
- int bottom = int(round(half_h + 0.1));
- float half_w = pad_w * 1.0 / 2;
- int left = int(round(half_w - 0.1));
- int right = int(round(half_w + 0.1));
- Pad::Run(mat, top, bottom, left, right, color);
- }
- }
- SCRFD::SCRFD(const std::string &model_file, const std::string ¶ms_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- if (model_format == ModelFormat::ONNX) {
- valid_cpu_backends = {Backend::ORT};
- valid_gpu_backends = {Backend::ORT, Backend::TRT};
- } else {
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- valid_rknpu_backends = {Backend::RKNPU2};
- }
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool SCRFD::Initialize() {
- // parameters for preprocess
- use_kps = true;
- size = {640, 640};
- padding_value = {0.0, 0.0, 0.0};
- is_mini_pad = false;
- is_no_pad = false;
- is_scale_up = false;
- stride = 32;
- downsample_strides = {8, 16, 32};
- num_anchors = 2;
- landmarks_per_face = 5;
- center_points_is_update_ = false;
- max_nms = 30000;
- // num_outputs = use_kps ? 9 : 6;
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- // Check if the input shape is dynamic after Runtime already initialized,
- // Note that, We need to force is_mini_pad 'false' to keep static
- // shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
- is_dynamic_input_ = false;
- auto shape = InputInfoOfRuntime(0).shape;
- for (int i = 0; i < shape.size(); ++i) {
- // if height or width is dynamic
- if (i >= 2 && shape[i] <= 0) {
- is_dynamic_input_ = true;
- break;
- }
- }
- if (!is_dynamic_input_) {
- is_mini_pad = false;
- }
- return true;
- }
- bool SCRFD::Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info) {
- float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
- size[0] * 1.0f / static_cast<float>(mat->Width()));
- if (std::fabs(ratio - 1.0f) > 1e-06) {
- int interp = cv::INTER_LINEAR;
- if (ratio > 1.0) {
- interp = cv::INTER_LINEAR;
- }
- int resize_h = int(mat->Height() * ratio);
- int resize_w = int(mat->Width() * ratio);
- Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
- }
- // scrfd's preprocess steps
- // 1. letterbox
- // 2. BGR->RGB
- // 3. HWC->CHW
- SCRFD::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
- is_scale_up, stride);
- BGR2RGB::Run(mat);
- if (!disable_normalize_) {
- // Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
- // std::vector<float>(mat->Channels(), 1.0));
- // Compute `result = mat * alpha + beta` directly by channel
- // Original Repo/tools/scrfd.py: cv2.dnn.blobFromImage(img, 1.0/128,
- // input_size, (127.5, 127.5, 127.5), swapRB=True)
- std::vector<float> alpha = {1.f / 128.f, 1.f / 128.f, 1.f / 128.f};
- std::vector<float> beta = {-127.5f / 128.f, -127.5f / 128.f,
- -127.5f / 128.f};
- Convert::Run(mat, alpha, beta);
- }
- if (!disable_permute_) {
- HWC2CHW::Run(mat);
- Cast::Run(mat, "float");
- }
- // Record output shape of preprocessed image
- (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
- static_cast<float>(mat->Width())};
- mat->ShareWithTensor(output);
- output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
- return true;
- }
- void SCRFD::GeneratePoints() {
- if (center_points_is_update_ && !is_dynamic_input_) {
- return;
- }
- // 8, 16, 32
- for (auto local_stride : downsample_strides) {
- unsigned int num_grid_w = size[0] / local_stride;
- unsigned int num_grid_h = size[1] / local_stride;
- // y
- for (unsigned int i = 0; i < num_grid_h; ++i) {
- // x
- for (unsigned int j = 0; j < num_grid_w; ++j) {
- // num_anchors, col major
- for (unsigned int k = 0; k < num_anchors; ++k) {
- SCRFDPoint point;
- point.cx = static_cast<float>(j);
- point.cy = static_cast<float>(i);
- center_points_[local_stride].push_back(point);
- }
- }
- }
- }
- center_points_is_update_ = true;
- }
- bool SCRFD::Postprocess(
- std::vector<FDTensor> &infer_result, FaceDetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold) {
- // number of downsample_strides
- int fmc = downsample_strides.size();
- // scrfd has 6,9,10,15 output tensors
- FDASSERT((infer_result.size() == 9 || infer_result.size() == 6 ||
- infer_result.size() == 10 || infer_result.size() == 15),
- "The default number of output tensor must be 6, 9, 10, or 15 "
- "according to scrfd.");
- FDASSERT((fmc == 3 || fmc == 5), "The fmc must be 3 or 5");
- FDASSERT((infer_result.at(0).shape[0] == 1), "Only support batch =1 now.");
- for (int i = 0; i < fmc; ++i) {
- if (infer_result.at(i).dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- }
- int total_num_boxes = 0;
- // compute the reserve space.
- for (int f = 0; f < fmc; ++f) {
- total_num_boxes += infer_result.at(f).shape[1];
- };
- GeneratePoints();
- result->Clear();
- // scale the boxes to the origin image shape
- auto iter_out = im_info.find("output_shape");
- auto iter_ipt = im_info.find("input_shape");
- FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
- "Cannot find input_shape or output_shape from im_info.");
- float out_h = iter_out->second[0];
- float out_w = iter_out->second[1];
- float ipt_h = iter_ipt->second[0];
- float ipt_w = iter_ipt->second[1];
- float scale = std::min(out_h / ipt_h, out_w / ipt_w);
- if (!is_scale_up) {
- scale = std::min(scale, 1.0f);
- }
- float pad_h = (out_h - ipt_h * scale) / 2.0f;
- float pad_w = (out_w - ipt_w * scale) / 2.0f;
- if (is_mini_pad) {
- pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
- pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
- }
- // must be setup landmarks_per_face before reserve
- if (use_kps) {
- result->landmarks_per_face = landmarks_per_face;
- } else {
- // force landmarks_per_face = 0, if use_kps has been set as 'false'.
- result->landmarks_per_face = 0;
- }
- result->Reserve(total_num_boxes);
- unsigned int count = 0;
- // loop each stride
- for (int f = 0; f < fmc; ++f) {
- float *score_ptr = static_cast<float *>(infer_result.at(f).Data());
- float *bbox_ptr = static_cast<float *>(infer_result.at(f + fmc).Data());
- const unsigned int num_points = infer_result.at(f).shape[1];
- int current_stride = downsample_strides[f];
- auto &stride_points = center_points_[current_stride];
- // loop each anchor
- for (unsigned int i = 0; i < num_points; ++i) {
- const float cls_conf = score_ptr[i];
- if (cls_conf < conf_threshold)
- continue; // filter
- auto &point = stride_points.at(i);
- const float cx = point.cx; // cx
- const float cy = point.cy; // cy
- // bbox
- const float *offsets = bbox_ptr + i * 4;
- float l = offsets[0]; // left
- float t = offsets[1]; // top
- float r = offsets[2]; // right
- float b = offsets[3]; // bottom
- float x1 = ((cx - l) * static_cast<float>(current_stride) -
- static_cast<float>(pad_w)) /
- scale; // cx - l x1
- float y1 = ((cy - t) * static_cast<float>(current_stride) -
- static_cast<float>(pad_h)) /
- scale; // cy - t y1
- float x2 = ((cx + r) * static_cast<float>(current_stride) -
- static_cast<float>(pad_w)) /
- scale; // cx + r x2
- float y2 = ((cy + b) * static_cast<float>(current_stride) -
- static_cast<float>(pad_h)) /
- scale; // cy + b y2
- result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
- result->scores.push_back(cls_conf);
- if (use_kps) {
- float *landmarks_ptr =
- static_cast<float *>(infer_result.at(f + 2 * fmc).Data());
- // landmarks
- const float *kps_offsets = landmarks_ptr + i * (landmarks_per_face * 2);
- for (unsigned int j = 0; j < landmarks_per_face * 2; j += 2) {
- float kps_l = kps_offsets[j];
- float kps_t = kps_offsets[j + 1];
- float kps_x = ((cx + kps_l) * static_cast<float>(current_stride) -
- static_cast<float>(pad_w)) /
- scale; // cx + l x
- float kps_y = ((cy + kps_t) * static_cast<float>(current_stride) -
- static_cast<float>(pad_h)) /
- scale; // cy + t y
- result->landmarks.emplace_back(std::array<float, 2>{kps_x, kps_y});
- }
- }
- count += 1; // limit boxes for nms.
- if (count > max_nms) {
- break;
- }
- }
- }
- // fetch original image shape
- FDASSERT((iter_ipt != im_info.end()),
- "Cannot find input_shape from im_info.");
- if (result->boxes.size() == 0) {
- return true;
- }
- utils::NMS(result, nms_iou_threshold);
- // scale and clip box
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f);
- result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f);
- result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f);
- result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f);
- result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
- result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
- result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
- result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
- }
- // scale and clip landmarks
- if (use_kps) {
- for (size_t i = 0; i < result->landmarks.size(); ++i) {
- result->landmarks[i][0] = std::max(result->landmarks[i][0], 0.0f);
- result->landmarks[i][1] = std::max(result->landmarks[i][1], 0.0f);
- result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
- result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
- }
- }
- return true;
- }
- bool SCRFD::Predict(cv::Mat *im, FaceDetectionResult *result,
- float conf_threshold, float nms_iou_threshold) {
- Mat mat(*im);
- std::vector<FDTensor> input_tensors(1);
- std::map<std::string, std::array<float, 2>> im_info;
- // Record the shape of image and the shape of preprocessed image
- im_info["input_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- im_info["output_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
- FDERROR << "Failed to preprocess input image." << std::endl;
- return false;
- }
- input_tensors[0].name = InputInfoOfRuntime(0).name;
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors, result, im_info, conf_threshold,
- nms_iou_threshold)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- void SCRFD::DisableNormalize() { disable_normalize_ = true; }
- void SCRFD::DisablePermute() { disable_permute_ = true; }
- } // namespace facedet
- } // namespace vision
- } // namespace ultra_infer
|