| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/facedet/contrib/ultraface.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace facedet {
- UltraFace::UltraFace(const std::string &model_file,
- const std::string ¶ms_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- if (model_format == ModelFormat::ONNX) {
- valid_cpu_backends = {Backend::ORT};
- valid_gpu_backends = {Backend::ORT, Backend::TRT};
- } else {
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- }
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool UltraFace::Initialize() {
- // parameters for preprocess
- size = {320, 240};
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- // Check if the input shape is dynamic after Runtime already initialized,
- is_dynamic_input_ = false;
- auto shape = InputInfoOfRuntime(0).shape;
- for (int i = 0; i < shape.size(); ++i) {
- // if height or width is dynamic
- if (i >= 2 && shape[i] <= 0) {
- is_dynamic_input_ = true;
- break;
- }
- }
- return true;
- }
- bool UltraFace::Preprocess(
- Mat *mat, FDTensor *output,
- std::map<std::string, std::array<float, 2>> *im_info) {
- // ultraface's preprocess steps
- // 1. resize
- // 2. BGR->RGB
- // 3. HWC->CHW
- int resize_w = size[0];
- int resize_h = size[1];
- if (resize_h != mat->Height() || resize_w != mat->Width()) {
- Resize::Run(mat, resize_w, resize_h);
- }
- BGR2RGB::Run(mat);
- // Compute `result = mat * alpha + beta` directly by channel
- // Reference: detect_imgs_onnx.py#L73
- std::vector<float> alpha = {1.0f / 128.0f, 1.0f / 128.0f, 1.0f / 128.0f};
- std::vector<float> beta = {-127.0f * (1.0f / 128.0f),
- -127.0f * (1.0f / 128.0f),
- -127.0f * (1.0f / 128.0f)}; // RGB;
- Convert::Run(mat, alpha, beta);
- // Record output shape of preprocessed image
- (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
- static_cast<float>(mat->Width())};
- HWC2CHW::Run(mat);
- Cast::Run(mat, "float");
- mat->ShareWithTensor(output);
- output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
- return true;
- }
- bool UltraFace::Postprocess(
- std::vector<FDTensor> &infer_result, FaceDetectionResult *result,
- const std::map<std::string, std::array<float, 2>> &im_info,
- float conf_threshold, float nms_iou_threshold) {
- // ultraface has 2 output tensors, scores & boxes
- FDASSERT(
- (infer_result.size() == 2),
- "The default number of output tensor must be 2 according to ultraface.");
- FDTensor &scores_tensor = infer_result.at(0); // (1,4420,2)
- FDTensor &boxes_tensor = infer_result.at(1); // (1,4420,4)
- FDASSERT((scores_tensor.shape[0] == 1), "Only support batch =1 now.");
- FDASSERT((boxes_tensor.shape[0] == 1), "Only support batch =1 now.");
- if (scores_tensor.dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- if (boxes_tensor.dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- result->Clear();
- // must be setup landmarks_per_face before reserve.
- // ultraface detector does not detect landmarks by default.
- result->landmarks_per_face = 0;
- result->Reserve(boxes_tensor.shape[1]);
- float *scores_ptr = static_cast<float *>(scores_tensor.Data());
- float *boxes_ptr = static_cast<float *>(boxes_tensor.Data());
- const size_t num_bboxes = boxes_tensor.shape[1]; // e.g 4420
- // fetch original image shape
- auto iter_ipt = im_info.find("input_shape");
- FDASSERT((iter_ipt != im_info.end()),
- "Cannot find input_shape from im_info.");
- float ipt_h = iter_ipt->second[0];
- float ipt_w = iter_ipt->second[1];
- // decode bounding boxes
- for (size_t i = 0; i < num_bboxes; ++i) {
- float confidence = scores_ptr[2 * i + 1];
- // filter boxes by conf_threshold
- if (confidence <= conf_threshold) {
- continue;
- }
- float x1 = boxes_ptr[4 * i + 0] * ipt_w;
- float y1 = boxes_ptr[4 * i + 1] * ipt_h;
- float x2 = boxes_ptr[4 * i + 2] * ipt_w;
- float y2 = boxes_ptr[4 * i + 3] * ipt_h;
- result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
- result->scores.push_back(confidence);
- }
- if (result->boxes.size() == 0) {
- return true;
- }
- utils::NMS(result, nms_iou_threshold);
- // scale and clip box
- for (size_t i = 0; i < result->boxes.size(); ++i) {
- result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f);
- result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f);
- result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f);
- result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f);
- result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
- result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
- result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
- result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
- }
- return true;
- }
- bool UltraFace::Predict(cv::Mat *im, FaceDetectionResult *result,
- float conf_threshold, float nms_iou_threshold) {
- Mat mat(*im);
- std::vector<FDTensor> input_tensors(1);
- std::map<std::string, std::array<float, 2>> im_info;
- // Record the shape of image and the shape of preprocessed image
- im_info["input_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- im_info["output_shape"] = {static_cast<float>(mat.Height()),
- static_cast<float>(mat.Width())};
- if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
- FDERROR << "Failed to preprocess input image." << std::endl;
- return false;
- }
- input_tensors[0].name = InputInfoOfRuntime(0).name;
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors, result, im_info, conf_threshold,
- nms_iou_threshold)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- } // namespace facedet
- } // namespace vision
- } // namespace ultra_infer
|