| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/facedet/ppdet/blazeface/blazeface.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace facedet {
- BlazeFace::BlazeFace(const std::string &model_file,
- const std::string ¶ms_file,
- const std::string &config_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format)
- : preprocessor_(config_file) {
- valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::LITE};
- valid_gpu_backends = {Backend::OPENVINO, Backend::LITE, Backend::PDINFER};
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool BlazeFace::Initialize() {
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- return true;
- }
- bool BlazeFace::Predict(const cv::Mat &im, FaceDetectionResult *result) {
- std::vector<FaceDetectionResult> results;
- if (!this->BatchPredict({im}, &results)) {
- return false;
- }
- *result = std::move(results[0]);
- return true;
- }
- bool BlazeFace::BatchPredict(const std::vector<cv::Mat> &images,
- std::vector<FaceDetectionResult> *results) {
- std::vector<FDMat> fd_images = WrapMat(images);
- FDASSERT(images.size() == 1, "Only support batch = 1 now.");
- std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
- if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
- FDERROR << "Failed to preprocess the input image." << std::endl;
- return false;
- }
- reused_input_tensors_[0].name = "image";
- reused_input_tensors_[1].name = "scale_factor";
- reused_input_tensors_[2].name = "im_shape";
- // Some models don't need scale_factor and im_shape as input
- while (reused_input_tensors_.size() != NumInputsOfRuntime()) {
- reused_input_tensors_.pop_back();
- }
- if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
- FDERROR << "Failed to inference by runtime." << std::endl;
- return false;
- }
- if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
- FDERROR << "Failed to postprocess the inference results by runtime."
- << std::endl;
- return false;
- }
- return true;
- }
- } // namespace facedet
- } // namespace vision
- } // namespace ultra_infer
|