| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/facedet/ppdet/blazeface/postprocessor.h"
- #include "ultra_infer/vision/detection/ppdet/multiclass_nms.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace facedet {
- BlazeFacePostprocessor::BlazeFacePostprocessor() {
- conf_threshold_ = 0.5;
- nms_threshold_ = 0.3;
- }
- bool BlazeFacePostprocessor::Run(
- const std::vector<FDTensor> &tensors,
- std::vector<FaceDetectionResult> *results,
- const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
- // Get number of boxes for each input image
- std::vector<int> num_boxes(tensors[1].shape[0]);
- int total_num_boxes = 0;
- if (tensors[1].dtype == FDDataType::INT32) {
- const auto *data = static_cast<const int32_t *>(tensors[1].CpuData());
- for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
- num_boxes[i] = static_cast<int>(data[i]);
- total_num_boxes += num_boxes[i];
- }
- } else if (tensors[1].dtype == FDDataType::INT64) {
- const auto *data = static_cast<const int64_t *>(tensors[1].CpuData());
- for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
- num_boxes[i] = static_cast<int>(data[i]);
- }
- }
- // Special case for TensorRT, it has fixed output shape of NMS
- // So there's invalid boxes in its' output boxes
- int num_output_boxes = static_cast<int>(tensors[0].Shape()[0]);
- bool contain_invalid_boxes = false;
- if (total_num_boxes != num_output_boxes) {
- if (num_output_boxes % num_boxes.size() == 0) {
- contain_invalid_boxes = true;
- } else {
- FDERROR << "Cannot handle the output data for this model, unexpected "
- "situation."
- << std::endl;
- return false;
- }
- }
- // Get boxes for each input image
- results->resize(num_boxes.size());
- if (tensors[0].shape[0] == 0) {
- // No detected boxes
- return true;
- }
- const auto *box_data = static_cast<const float *>(tensors[0].CpuData());
- int offset = 0;
- for (size_t i = 0; i < num_boxes.size(); ++i) {
- const float *ptr = box_data + offset;
- (*results)[i].Reserve(num_boxes[i]);
- for (size_t j = 0; j < num_boxes[i]; ++j) {
- if (ptr[j * 6 + 1] > conf_threshold_) {
- (*results)[i].scores.push_back(ptr[j * 6 + 1]);
- (*results)[i].boxes.emplace_back(std::array<float, 4>(
- {ptr[j * 6 + 2], ptr[j * 6 + 3], ptr[j * 6 + 4], ptr[j * 6 + 5]}));
- }
- }
- if (contain_invalid_boxes) {
- offset += static_cast<int>(num_output_boxes * 6 / num_boxes.size());
- } else {
- offset += static_cast<int>(num_boxes[i] * 6);
- }
- }
- return true;
- }
- } // namespace facedet
- } // namespace vision
- } // namespace ultra_infer
|