| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- #include "ultra_infer/vision/keypointdet/pptinypose/pptinypose.h"
- #include "ultra_infer/vision/utils/utils.h"
- #include "yaml-cpp/yaml.h"
- #ifdef ENABLE_PADDLE2ONNX
- #include "paddle2onnx/converter.h"
- #endif
- #include "ultra_infer/vision.h"
- namespace ultra_infer {
- namespace vision {
- namespace keypointdetection {
- PPTinyPose::PPTinyPose(const std::string &model_file,
- const std::string ¶ms_file,
- const std::string &config_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- config_file_ = config_file;
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO,
- Backend::LITE};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- valid_kunlunxin_backends = {Backend::LITE};
- valid_rknpu_backends = {Backend::RKNPU2};
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool PPTinyPose::Initialize() {
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- return false;
- }
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- return true;
- }
- bool PPTinyPose::BuildPreprocessPipelineFromConfig() {
- processors_.clear();
- YAML::Node cfg;
- try {
- cfg = YAML::LoadFile(config_file_);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file_
- << ", maybe you should check this file." << std::endl;
- return false;
- }
- std::string arch = cfg["arch"].as<std::string>();
- if (arch != "HRNet" && arch != "HigherHRNet") {
- FDERROR << "Require the arch of model is HRNet or HigherHRNet, but arch "
- << "defined in "
- << "config file is " << arch << "." << std::endl;
- return false;
- }
- processors_.push_back(std::make_shared<BGR2RGB>());
- for (const auto &op : cfg["Preprocess"]) {
- std::string op_name = op["type"].as<std::string>();
- if (op_name == "NormalizeImage") {
- if (!disable_normalize_) {
- auto mean = op["mean"].as<std::vector<float>>();
- auto std = op["std"].as<std::vector<float>>();
- bool is_scale = op["is_scale"].as<bool>();
- processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
- }
- } else if (op_name == "Permute") {
- if (!disable_permute_) {
- // permute = cast<float> + HWC2CHW
- processors_.push_back(std::make_shared<Cast>("float"));
- processors_.push_back(std::make_shared<HWC2CHW>());
- }
- } else if (op_name == "TopDownEvalAffine") {
- auto trainsize = op["trainsize"].as<std::vector<int>>();
- int height = trainsize[1];
- int width = trainsize[0];
- cv::Mat trans_matrix(2, 3, CV_64FC1);
- processors_.push_back(
- std::make_shared<WarpAffine>(trans_matrix, width, height, 1));
- } else {
- FDERROR << "Unexcepted preprocess operator: " << op_name << "."
- << std::endl;
- return false;
- }
- }
- return true;
- }
- bool PPTinyPose::Preprocess(Mat *mat, std::vector<FDTensor> *outputs) {
- for (size_t i = 0; i < processors_.size(); ++i) {
- if (processors_[i]->Name().compare("WarpAffine") == 0) {
- auto processor = dynamic_cast<WarpAffine *>(processors_[i].get());
- float origin_width = static_cast<float>(mat->Width());
- float origin_height = static_cast<float>(mat->Height());
- std::vector<float> center = {origin_width / 2.0f, origin_height / 2.0f};
- std::vector<float> scale = {origin_width, origin_height};
- int resize_width = -1;
- int resize_height = -1;
- std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
- cv::Mat trans_matrix(2, 3, CV_64FC1);
- GetAffineTransform(center, scale, 0, {resize_width, resize_height},
- &trans_matrix, 0);
- if (!(processor->SetTransformMatrix(trans_matrix))) {
- FDERROR << "Failed to set transform matrix of "
- << processors_[i]->Name() << " processor." << std::endl;
- }
- }
- if (!(*(processors_[i].get()))(mat)) {
- FDERROR << "Failed to process image data in " << processors_[i]->Name()
- << "." << std::endl;
- return false;
- }
- }
- outputs->resize(1);
- (*outputs)[0].name = InputInfoOfRuntime(0).name;
- mat->ShareWithTensor(&((*outputs)[0]));
- // reshape to [1, c, h, w]
- (*outputs)[0].ExpandDim(0);
- return true;
- }
- bool PPTinyPose::Postprocess(std::vector<FDTensor> &infer_result,
- KeyPointDetectionResult *result,
- const std::vector<float> ¢er,
- const std::vector<float> &scale) {
- FDASSERT(infer_result[0].shape[0] == 1,
- "Only support batch = 1 in UltraInfer now.");
- result->Clear();
- if (infer_result.size() == 1) {
- FDTensor result_copy = infer_result[0];
- result_copy.Reshape({result_copy.shape[0], result_copy.shape[1],
- result_copy.shape[2] * result_copy.shape[3]});
- infer_result.resize(2);
- function::ArgMax(result_copy, &infer_result[1], -1);
- }
- // Calculate output length
- int outdata_size =
- std::accumulate(infer_result[0].shape.begin(),
- infer_result[0].shape.end(), 1, std::multiplies<int>());
- int idxdata_size =
- std::accumulate(infer_result[1].shape.begin(),
- infer_result[1].shape.end(), 1, std::multiplies<int>());
- if (outdata_size < 6) {
- FDWARNING << "PPTinyPose No object detected." << std::endl;
- }
- float *out_data = static_cast<float *>(infer_result[0].Data());
- void *idx_data = infer_result[1].Data();
- int idx_dtype = infer_result[1].dtype;
- std::vector<int> out_data_shape(infer_result[0].shape.begin(),
- infer_result[0].shape.end());
- std::vector<int> idx_data_shape(infer_result[1].shape.begin(),
- infer_result[1].shape.end());
- std::vector<float> preds(out_data_shape[1] * 3, 0);
- std::vector<float> heatmap(out_data, out_data + outdata_size);
- std::vector<int64_t> idxout(idxdata_size);
- if (idx_dtype == FDDataType::INT32) {
- std::copy(static_cast<int32_t *>(idx_data),
- static_cast<int32_t *>(idx_data) + idxdata_size, idxout.begin());
- } else if (idx_dtype == FDDataType::INT64) {
- std::copy(static_cast<int64_t *>(idx_data),
- static_cast<int64_t *>(idx_data) + idxdata_size, idxout.begin());
- } else {
- FDERROR << "Only support process inference result with INT32/INT64 data "
- "type, but now it's "
- << idx_dtype << "." << std::endl;
- }
- GetFinalPredictions(heatmap, out_data_shape, idxout, center, scale, &preds,
- this->use_dark);
- result->Reserve(outdata_size);
- result->num_joints = out_data_shape[1];
- result->keypoints.clear();
- for (int i = 0; i < out_data_shape[1]; i++) {
- result->keypoints.push_back({preds[i * 3 + 1], preds[i * 3 + 2]});
- result->scores.push_back(preds[i * 3]);
- }
- return true;
- }
- bool PPTinyPose::Predict(cv::Mat *im, KeyPointDetectionResult *result) {
- std::vector<float> center = {round(im->cols / 2.0f), round(im->rows / 2.0f)};
- std::vector<float> scale = {static_cast<float>(im->cols),
- static_cast<float>(im->rows)};
- Mat mat(*im);
- std::vector<FDTensor> processed_data;
- if (!Preprocess(&mat, &processed_data)) {
- FDERROR << "Failed to preprocess input data while using model:"
- << ModelName() << "." << std::endl;
- return false;
- }
- std::vector<FDTensor> infer_result;
- if (!Infer(processed_data, &infer_result)) {
- FDERROR << "Failed to inference while using model:" << ModelName() << "."
- << std::endl;
- return false;
- }
- if (!Postprocess(infer_result, result, center, scale)) {
- FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
- << std::endl;
- return false;
- }
- return true;
- }
- bool PPTinyPose::Predict(cv::Mat *im, KeyPointDetectionResult *result,
- const DetectionResult &detection_result) {
- std::vector<Mat> crop_imgs;
- std::vector<std::vector<float>> center_bs;
- std::vector<std::vector<float>> scale_bs;
- int crop_imgs_num = 0;
- int box_num = detection_result.boxes.size();
- for (int i = 0; i < box_num; i++) {
- auto box = detection_result.boxes[i];
- auto label_id = detection_result.label_ids[i];
- int channel = im->channels();
- cv::Mat cv_crop_img(0, 0, CV_32SC(channel));
- Mat crop_img(cv_crop_img);
- std::vector<float> rect(box.begin(), box.end());
- std::vector<float> center;
- std::vector<float> scale;
- if (label_id == 0) {
- Mat mat(*im);
- utils::CropImageByBox(mat, &crop_img, rect, ¢er, &scale);
- center_bs.emplace_back(center);
- scale_bs.emplace_back(scale);
- crop_imgs.emplace_back(crop_img);
- crop_imgs_num += 1;
- }
- }
- for (int i = 0; i < crop_imgs_num; i++) {
- std::vector<FDTensor> processed_data;
- if (!Preprocess(&crop_imgs[i], &processed_data)) {
- FDERROR << "Failed to preprocess input data while using model:"
- << ModelName() << "." << std::endl;
- return false;
- }
- std::vector<FDTensor> infer_result;
- if (!Infer(processed_data, &infer_result)) {
- FDERROR << "Failed to inference while using model:" << ModelName() << "."
- << std::endl;
- return false;
- }
- KeyPointDetectionResult one_cropimg_result;
- if (!Postprocess(infer_result, &one_cropimg_result, center_bs[i],
- scale_bs[i])) {
- FDERROR << "Failed to postprocess while using model:" << ModelName()
- << "." << std::endl;
- return false;
- }
- if (result->num_joints == -1) {
- result->num_joints = one_cropimg_result.num_joints;
- }
- std::copy(one_cropimg_result.keypoints.begin(),
- one_cropimg_result.keypoints.end(),
- std::back_inserter(result->keypoints));
- std::copy(one_cropimg_result.scores.begin(),
- one_cropimg_result.scores.end(),
- std::back_inserter(result->scores));
- }
- return true;
- }
- } // namespace keypointdetection
- } // namespace vision
- } // namespace ultra_infer
|