| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/matting/contrib/modnet.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/utils/utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace matting {
- MODNet::MODNet(const std::string &model_file, const std::string ¶ms_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- if (model_format == ModelFormat::ONNX) {
- valid_cpu_backends = {Backend::ORT};
- valid_gpu_backends = {Backend::ORT, Backend::TRT};
- } else {
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- }
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool MODNet::Initialize() {
- // parameters for preprocess
- size = {256, 256};
- alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
- beta = {-1.f, -1.f, -1.f}; // RGB
- swap_rb = true;
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- return true;
- }
- bool MODNet::Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<int, 2>> *im_info) {
- // 1. Resize
- // 2. BGR2RGB
- // 3. Convert(opencv style) or Normalize
- // 4. HWC2CHW
- int resize_w = size[0];
- int resize_h = size[1];
- if (resize_h != mat->Height() || resize_w != mat->Width()) {
- Resize::Run(mat, resize_w, resize_h);
- }
- if (swap_rb) {
- BGR2RGB::Run(mat);
- }
- Convert::Run(mat, alpha, beta);
- // Record output shape of preprocessed image
- (*im_info)["output_shape"] = {mat->Height(), mat->Width()};
- HWC2CHW::Run(mat);
- Cast::Run(mat, "float");
- mat->ShareWithTensor(output);
- output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
- return true;
- }
- bool MODNet::Postprocess(
- std::vector<FDTensor> &infer_result, MattingResult *result,
- const std::map<std::string, std::array<int, 2>> &im_info) {
- FDASSERT((infer_result.size() == 1),
- "The default number of output tensor must be 1 according to "
- "modnet.");
- FDTensor &alpha_tensor = infer_result.at(0); // (1, 1, h, w)
- FDASSERT((alpha_tensor.shape[0] == 1), "Only support batch =1 now.");
- if (alpha_tensor.dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- auto iter_ipt = im_info.find("input_shape");
- auto iter_out = im_info.find("output_shape");
- FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
- "Cannot find input_shape or output_shape from im_info.");
- int out_h = iter_out->second[0];
- int out_w = iter_out->second[1];
- int ipt_h = iter_ipt->second[0];
- int ipt_w = iter_ipt->second[1];
- float *alpha_ptr = static_cast<float *>(alpha_tensor.Data());
- // cv::Mat alpha_zero_copy_ref(out_h, out_w, CV_32FC1, alpha_ptr);
- // Mat alpha_resized(alpha_zero_copy_ref); // ref-only, zero copy.
- Mat alpha_resized = Mat::Create(out_h, out_w, 1, FDDataType::FP32,
- alpha_ptr); // ref-only, zero copy.
- if ((out_h != ipt_h) || (out_w != ipt_w)) {
- Resize::Run(&alpha_resized, ipt_w, ipt_h, -1, -1);
- }
- result->Clear();
- // note: must be setup shape before Resize
- result->contain_foreground = false;
- result->shape = {static_cast<int64_t>(ipt_h), static_cast<int64_t>(ipt_w)};
- int numel = ipt_h * ipt_w;
- int nbytes = numel * sizeof(float);
- result->Resize(numel);
- std::memcpy(result->alpha.data(), alpha_resized.Data(), nbytes);
- return true;
- }
- bool MODNet::Predict(cv::Mat *im, MattingResult *result) {
- Mat mat(*im);
- std::vector<FDTensor> input_tensors(1);
- std::map<std::string, std::array<int, 2>> im_info;
- // Record the shape of image and the shape of preprocessed image
- im_info["input_shape"] = {mat.Height(), mat.Width()};
- im_info["output_shape"] = {mat.Height(), mat.Width()};
- if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
- FDERROR << "Failed to preprocess input image." << std::endl;
- return false;
- }
- input_tensors[0].name = InputInfoOfRuntime(0).name;
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors, result, im_info)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- } // namespace matting
- } // namespace vision
- } // namespace ultra_infer
|