| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- namespace ultra_infer {
- namespace vision {
- namespace matting {
- /*! @brief MODNet model object used when to load a MODNet model exported by
- * MODNet.
- */
- class ULTRAINFER_DECL MODNet : public UltraInferModel {
- public:
- /** \brief Set path of model file and the configuration of runtime.
- *
- * \param[in] model_file Path of model file, e.g ./modnet.onnx
- * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams,
- * if the model format is ONNX, this parameter will be ignored \param[in]
- * custom_option RuntimeOption for inference, the default will use cpu, and
- * choose the backend defined in "valid_cpu_backends" \param[in] model_format
- * Model format of the loaded model, default is ONNX format
- */
- MODNet(const std::string &model_file, const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- std::string ModelName() const { return "matting/MODNet"; }
- /*! @brief
- Argument for image preprocessing step, tuple of (width, height), decide the
- target size after resize, default (256, 256)
- */
- std::vector<int> size;
- /*! @brief
- Argument for image preprocessing step, parameters for normalization, size
- should be the the same as channels, default alpha = {1.f / 127.5f, 1.f /
- 127.5f, 1.f / 127.5f}
- */
- std::vector<float> alpha;
- /*! @brief
- Argument for image preprocessing step, parameters for normalization, size
- should be the the same as channels, default beta = {-1.f, -1.f, -1.f}
- */
- std::vector<float> beta;
- /*! @brief
- Argument for image preprocessing step, whether to swap the B and R channel,
- such as BGR->RGB, default true.
- */
- bool swap_rb;
- /** \brief Predict the matting result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread(), is a 3-D array
- * with layout HWC, BGR format \param[in] result The output matting result
- * will be written to this structure \return true if the prediction succeeded,
- * otherwise false
- */
- bool Predict(cv::Mat *im, MattingResult *result);
- private:
- bool Initialize();
- bool Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<int, 2>> *im_info);
- bool Postprocess(std::vector<FDTensor> &infer_result, MattingResult *result,
- const std::map<std::string, std::array<int, 2>> &im_info);
- };
- } // namespace matting
- } // namespace vision
- } // namespace ultra_infer
|