| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #pragma once
- #include "ultra_infer/ultra_infer_model.h"
- #include "ultra_infer/vision/common/processors/transform.h"
- #include "ultra_infer/vision/common/result.h"
- namespace ultra_infer {
- namespace vision {
- /** \brief All image/video matting model APIs are defined inside this namespace
- *
- */
- namespace matting {
- /*! @brief RobustVideoMatting model object used when to load a
- * RobustVideoMatting model exported by RobustVideoMatting
- */
- class ULTRAINFER_DECL RobustVideoMatting : public UltraInferModel {
- public:
- /** \brief Set path of model file and configuration file, and the
- * configuration of runtime
- *
- * \param[in] model_file Path of model file, e.g rvm/rvm_mobilenetv3_fp32.onnx
- * \param[in] params_file Path of parameter file, if the model format is ONNX,
- * this parameter will be ignored \param[in] custom_option RuntimeOption for
- * inference, the default will use cpu, and choose the backend defined in
- * `valid_cpu_backends` \param[in] model_format Model format of the loaded
- * model, default is ONNX format
- */
- RobustVideoMatting(const std::string &model_file,
- const std::string ¶ms_file = "",
- const RuntimeOption &custom_option = RuntimeOption(),
- const ModelFormat &model_format = ModelFormat::ONNX);
- /// Get model's name
- std::string ModelName() const { return "matting/RobustVideoMatting"; }
- /** \brief Predict the matting result for an input image
- *
- * \param[in] im The input image data, comes from cv::imread()
- * \param[in] result The output matting result will be written to this
- * structure \return true if the prediction succeeded, otherwise false
- */
- bool Predict(cv::Mat *im, MattingResult *result);
- /// Preprocess image size, the default is (1080, 1920)
- std::vector<int> size;
- /// Whether to open the video mode, if there are some irrelevant pictures, set
- /// it to false, the default is true // NOLINT
- bool video_mode;
- /// Whether convert to RGB, Set to false if you have converted YUV format
- /// images to RGB outside the model, default true // NOLINT
- bool swap_rb;
- private:
- bool Initialize();
- /// Preprocess an input image, and set the preprocessed results to `outputs`
- bool Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<int, 2>> *im_info);
- /// Postprocess the inferenced results, and set the final result to `result`
- bool Postprocess(std::vector<FDTensor> &infer_result, MattingResult *result,
- const std::map<std::string, std::array<int, 2>> &im_info);
- /// Init dynamic inputs datas
- std::vector<std::vector<float>> dynamic_inputs_datas_ = {
- {0.0f}, // r1i
- {0.0f}, // r2i
- {0.0f}, // r3i
- {0.0f}, // r4i
- {0.25f}, // downsample_ratio
- };
- /// Init dynamic inputs dims
- std::vector<std::vector<int64_t>> dynamic_inputs_dims_ = {
- {1, 1, 1, 1}, // r1i
- {1, 1, 1, 1}, // r2i
- {1, 1, 1, 1}, // r3i
- {1, 1, 1, 1}, // r4i
- {1}, // downsample_ratio
- };
- };
- } // namespace matting
- } // namespace vision
- } // namespace ultra_infer
|