| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/matting/ppmatting/ppmatting.h"
- #include "ultra_infer/vision/utils/utils.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- namespace matting {
- PPMatting::PPMatting(const std::string &model_file,
- const std::string ¶ms_file,
- const std::string &config_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- config_file_ = config_file;
- valid_cpu_backends = {Backend::ORT, Backend::PDINFER, Backend::LITE};
- valid_gpu_backends = {Backend::PDINFER, Backend::TRT};
- valid_kunlunxin_backends = {Backend::LITE};
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool PPMatting::Initialize() {
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- return false;
- }
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- return true;
- }
- bool PPMatting::BuildPreprocessPipelineFromConfig() {
- processors_.clear();
- YAML::Node cfg;
- processors_.push_back(std::make_shared<BGR2RGB>());
- try {
- cfg = YAML::LoadFile(config_file_);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file_
- << ", maybe you should check this file." << std::endl;
- return false;
- }
- FDASSERT((cfg["Deploy"]["input_shape"]),
- "The yaml file should include input_shape parameters");
- // input_shape
- // b c h w
- auto input_shape = cfg["Deploy"]["input_shape"].as<std::vector<int>>();
- FDASSERT(input_shape.size() == 4,
- "The input_shape in yaml file need to be 4-dimensions, but now its "
- "dimension is %zu.",
- input_shape.size());
- is_fixed_input_shape_ = false;
- if (input_shape[2] > 0 && input_shape[3] > 0) {
- is_fixed_input_shape_ = true;
- }
- if (input_shape[2] < 0 || input_shape[3] < 0) {
- FDWARNING << "Detected dynamic input shape of your model, only Paddle "
- "Inference / OpenVINO support this model now."
- << std::endl;
- }
- if (cfg["Deploy"]["transforms"]) {
- auto preprocess_cfg = cfg["Deploy"]["transforms"];
- int long_size = -1;
- for (const auto &op : preprocess_cfg) {
- FDASSERT(op.IsMap(),
- "Require the transform information in yaml be Map type.");
- if (op["type"].as<std::string>() == "LimitShort") {
- int max_short = op["max_short"] ? op["max_short"].as<int>() : -1;
- int min_short = op["min_short"] ? op["min_short"].as<int>() : -1;
- if (is_fixed_input_shape_) {
- // if the input shape is fixed, will resize by scale, and the max
- // shape will not exceed input_shape
- long_size = max_short;
- std::vector<int> max_size = {input_shape[2], input_shape[3]};
- processors_.push_back(
- std::make_shared<ResizeByShort>(long_size, 1, true, max_size));
- } else {
- processors_.push_back(
- std::make_shared<LimitShort>(max_short, min_short));
- }
- } else if (op["type"].as<std::string>() == "ResizeToIntMult") {
- if (is_fixed_input_shape_) {
- std::vector<int> max_size = {input_shape[2], input_shape[3]};
- processors_.push_back(
- std::make_shared<ResizeByShort>(long_size, 1, true, max_size));
- } else {
- int mult_int = op["mult_int"] ? op["mult_int"].as<int>() : 32;
- processors_.push_back(std::make_shared<LimitByStride>(mult_int));
- }
- } else if (op["type"].as<std::string>() == "Normalize") {
- std::vector<float> mean = {0.5, 0.5, 0.5};
- std::vector<float> std = {0.5, 0.5, 0.5};
- if (op["mean"]) {
- mean = op["mean"].as<std::vector<float>>();
- }
- if (op["std"]) {
- std = op["std"].as<std::vector<float>>();
- }
- processors_.push_back(std::make_shared<Normalize>(mean, std));
- } else if (op["type"].as<std::string>() == "ResizeByShort") {
- long_size = op["short_size"].as<int>();
- if (is_fixed_input_shape_) {
- std::vector<int> max_size = {input_shape[2], input_shape[3]};
- processors_.push_back(
- std::make_shared<ResizeByShort>(long_size, 1, true, max_size));
- } else {
- processors_.push_back(std::make_shared<ResizeByShort>(long_size));
- }
- }
- }
- // the default padding value is {127.5,127.5,127.5} so after normalizing,
- // ((127.5/255)-0.5)/0.5 = 0.0
- std::vector<float> value = {0.0, 0.0, 0.0};
- processors_.push_back(std::make_shared<Cast>("float"));
- processors_.push_back(
- std::make_shared<PadToSize>(input_shape[3], input_shape[2], value));
- processors_.push_back(std::make_shared<HWC2CHW>());
- }
- return true;
- }
- bool PPMatting::Preprocess(Mat *mat, FDTensor *output,
- std::map<std::string, std::array<int, 2>> *im_info) {
- (*im_info)["input_shape"] = {mat->Height(), mat->Width()};
- for (size_t i = 0; i < processors_.size(); ++i) {
- if (!(*(processors_[i].get()))(mat)) {
- FDERROR << "Failed to process image data in " << processors_[i]->Name()
- << "." << std::endl;
- return false;
- }
- }
- (*im_info)["output_shape"] = {mat->Height(), mat->Width()};
- mat->ShareWithTensor(output);
- output->shape.insert(output->shape.begin(), 1);
- output->name = InputInfoOfRuntime(0).name;
- return true;
- }
- bool PPMatting::Postprocess(
- std::vector<FDTensor> &infer_result, MattingResult *result,
- const std::map<std::string, std::array<int, 2>> &im_info) {
- FDASSERT((infer_result.size() == 1),
- "The default number of output tensor must be 1 ");
- FDTensor &alpha_tensor = infer_result.at(0); // (1, 1, h, w)
- FDASSERT((alpha_tensor.shape[0] == 1), "Only support batch = 1 now.");
- if (alpha_tensor.dtype != FDDataType::FP32) {
- FDERROR << "Only support post process with float32 data." << std::endl;
- return false;
- }
- std::vector<int64_t> dim{0, 2, 3, 1};
- function::Transpose(alpha_tensor, &alpha_tensor, dim);
- alpha_tensor.Squeeze(0);
- Mat mat = Mat::Create(alpha_tensor);
- auto iter_ipt = im_info.find("input_shape");
- auto iter_out = im_info.find("output_shape");
- if (is_fixed_input_shape_) {
- double scale_h = static_cast<double>(iter_out->second[0]) /
- static_cast<double>(iter_ipt->second[0]);
- double scale_w = static_cast<double>(iter_out->second[1]) /
- static_cast<double>(iter_ipt->second[1]);
- double actual_scale = std::min(scale_h, scale_w);
- int size_before_pad_h = round(actual_scale * iter_ipt->second[0]);
- int size_before_pad_w = round(actual_scale * iter_ipt->second[1]);
- Crop::Run(&mat, 0, 0, size_before_pad_w, size_before_pad_h);
- }
- Resize::Run(&mat, iter_ipt->second[1], iter_ipt->second[0], -1.0f, -1.0f, 1,
- false, ProcLib::OPENCV);
- result->Clear();
- // note: must be setup shape before Resize
- result->contain_foreground = false;
- result->shape = {iter_ipt->second[0], iter_ipt->second[1]};
- int numel = iter_ipt->second[0] * iter_ipt->second[1];
- int nbytes = numel * sizeof(float);
- result->Resize(numel);
- std::memcpy(result->alpha.data(), mat.Data(), nbytes);
- return true;
- }
- bool PPMatting::Predict(cv::Mat *im, MattingResult *result) {
- Mat mat(*im);
- std::vector<FDTensor> processed_data(1);
- std::map<std::string, std::array<int, 2>> im_info;
- if (!Preprocess(&mat, &(processed_data[0]), &im_info)) {
- FDERROR << "Failed to preprocess input data while using model:"
- << ModelName() << "." << std::endl;
- return false;
- }
- std::vector<FDTensor> infer_result(1);
- if (!Infer(processed_data, &infer_result)) {
- FDERROR << "Failed to inference while using model:" << ModelName() << "."
- << std::endl;
- return false;
- }
- if (!Postprocess(infer_result, result, im_info)) {
- FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
- << std::endl;
- return false;
- }
- return true;
- }
- } // namespace matting
- } // namespace vision
- } // namespace ultra_infer
|