| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/ocr/ppocr/cls_preprocessor.h"
- #include "ultra_infer/function/concat.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/ocr/ppocr/utils/ocr_utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace ocr {
- ClassifierPreprocessor::ClassifierPreprocessor() {
- resize_op_ = std::make_shared<Resize>(-1, -1);
- std::vector<float> value = {0, 0, 0};
- pad_op_ = std::make_shared<Pad>(0, 0, 0, 0, value);
- normalize_op_ =
- std::make_shared<Normalize>(std::vector<float>({0.5f, 0.5f, 0.5f}),
- std::vector<float>({0.5f, 0.5f, 0.5f}), true);
- hwc2chw_op_ = std::make_shared<HWC2CHW>();
- }
- void ClassifierPreprocessor::OcrClassifierResizeImage(
- FDMat *mat, const std::vector<int> &cls_image_shape) {
- int img_c = cls_image_shape[0];
- int img_h = cls_image_shape[1];
- int img_w = cls_image_shape[2];
- float ratio = float(mat->Width()) / float(mat->Height());
- int resize_w;
- if (ceilf(img_h * ratio) > img_w)
- resize_w = img_w;
- else
- resize_w = int(ceilf(img_h * ratio));
- resize_op_->SetWidthAndHeight(resize_w, img_h);
- (*resize_op_)(mat);
- }
- bool ClassifierPreprocessor::Run(std::vector<FDMat> *images,
- std::vector<FDTensor> *outputs,
- size_t start_index, size_t end_index) {
- if (images->size() == 0 || start_index < 0 || end_index <= start_index ||
- end_index > images->size()) {
- FDERROR << "images->size() or index error. Correct is: 0 <= start_index < "
- "end_index <= images->size()"
- << std::endl;
- return false;
- }
- std::vector<FDMat> mats(end_index - start_index);
- for (size_t i = start_index; i < end_index; ++i) {
- mats[i - start_index] = images->at(i);
- }
- return Run(&mats, outputs);
- }
- bool ClassifierPreprocessor::Apply(FDMatBatch *image_batch,
- std::vector<FDTensor> *outputs) {
- for (size_t i = 0; i < image_batch->mats->size(); ++i) {
- FDMat *mat = &(image_batch->mats->at(i));
- OcrClassifierResizeImage(mat, cls_image_shape_);
- if (!disable_normalize_) {
- (*normalize_op_)(mat);
- }
- std::vector<float> value = {0, 0, 0};
- if (mat->Width() < cls_image_shape_[2]) {
- pad_op_->SetPaddingSize(0, 0, 0, cls_image_shape_[2] - mat->Width());
- (*pad_op_)(mat);
- }
- if (!disable_permute_) {
- (*hwc2chw_op_)(mat);
- }
- }
- // Only have 1 output tensor.
- outputs->resize(1);
- // Get the NCHW tensor
- FDTensor *tensor = image_batch->Tensor();
- (*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
- tensor->Data(), tensor->device,
- tensor->device_id);
- return true;
- }
- } // namespace ocr
- } // namespace vision
- } // namespace ultra_infer
|