| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/ocr/ppocr/det_postprocessor.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/ocr/ppocr/utils/ocr_utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace ocr {
- bool DBDetectorPostprocessor::SingleBatchPostprocessor(
- const float *out_data, int n2, int n3,
- const std::array<int, 4> &det_img_info,
- std::vector<std::array<int, 8>> *boxes_result) {
- int n = n2 * n3;
- // prepare bitmap
- std::vector<float> pred(n, 0.0);
- std::vector<unsigned char> cbuf(n, ' ');
- for (int i = 0; i < n; i++) {
- pred[i] = float(out_data[i]);
- cbuf[i] = (unsigned char)((out_data[i]) * 255);
- }
- cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
- cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());
- const double threshold = det_db_thresh_ * 255;
- const double maxvalue = 255;
- cv::Mat bit_map;
- cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
- if (use_dilation_) {
- cv::Mat dila_ele =
- cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
- cv::dilate(bit_map, bit_map, dila_ele);
- }
- std::vector<std::vector<std::vector<int>>> boxes;
- boxes = util_post_processor_.BoxesFromBitmap(
- pred_map, bit_map, det_db_box_thresh_, det_db_unclip_ratio_,
- det_db_score_mode_);
- boxes = util_post_processor_.FilterTagDetRes(boxes, det_img_info);
- // boxes to boxes_result
- for (int i = 0; i < boxes.size(); i++) {
- std::array<int, 8> new_box;
- int k = 0;
- for (auto &vec : boxes[i]) {
- for (auto &e : vec) {
- new_box[k++] = e;
- }
- }
- boxes_result->emplace_back(new_box);
- }
- return true;
- }
- bool DBDetectorPostprocessor::Run(
- const std::vector<FDTensor> &tensors,
- std::vector<std::vector<std::array<int, 8>>> *results,
- const std::vector<std::array<int, 4>> &batch_det_img_info) {
- // DBDetector have only 1 output tensor.
- const FDTensor &tensor = tensors[0];
- // For DBDetector, the output tensor shape = [batch, 1, ?, ?]
- size_t batch = tensor.shape[0];
- size_t length = accumulate(tensor.shape.begin() + 1, tensor.shape.end(), 1,
- std::multiplies<int>());
- const float *tensor_data = reinterpret_cast<const float *>(tensor.Data());
- results->resize(batch);
- for (int i_batch = 0; i_batch < batch; ++i_batch) {
- SingleBatchPostprocessor(tensor_data, tensor.shape[2], tensor.shape[3],
- batch_det_img_info[i_batch],
- &results->at(i_batch));
- tensor_data = tensor_data + length;
- }
- return true;
- }
- } // namespace ocr
- } // namespace vision
- } // namespace ultra_infer
|