| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/ocr/ppocr/rec_postprocessor.h"
- #include "ultra_infer/utils/perf.h"
- #include "ultra_infer/vision/ocr/ppocr/utils/ocr_utils.h"
- namespace ultra_infer {
- namespace vision {
- namespace ocr {
- std::vector<std::string> ReadDict(const std::string &path) {
- std::ifstream in(path);
- FDASSERT(in, "Cannot open file %s to read.", path.c_str());
- std::string line;
- std::vector<std::string> m_vec;
- while (getline(in, line)) {
- m_vec.push_back(line);
- }
- m_vec.insert(m_vec.begin(), "#"); // blank char for ctc
- m_vec.push_back(" ");
- return m_vec;
- }
- RecognizerPostprocessor::RecognizerPostprocessor() { initialized_ = false; }
- RecognizerPostprocessor::RecognizerPostprocessor(
- const std::string &label_path) {
- // init label_lsit
- label_list_ = ReadDict(label_path);
- initialized_ = true;
- }
- bool RecognizerPostprocessor::SingleBatchPostprocessor(
- const float *out_data, const std::vector<int64_t> &output_shape,
- std::string *text, float *rec_score) {
- std::string &str_res = *text;
- float &score = *rec_score;
- score = 0.f;
- int argmax_idx;
- int last_index = 0;
- int count = 0;
- float max_value = 0.0f;
- for (int n = 0; n < output_shape[1]; n++) {
- argmax_idx = int(
- std::distance(&out_data[n * output_shape[2]],
- std::max_element(&out_data[n * output_shape[2]],
- &out_data[(n + 1) * output_shape[2]])));
- max_value = float(*std::max_element(&out_data[n * output_shape[2]],
- &out_data[(n + 1) * output_shape[2]]));
- if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
- score += max_value;
- count += 1;
- if (argmax_idx > label_list_.size()) {
- FDERROR << "The output index: " << argmax_idx
- << " is larger than the size of label_list: "
- << label_list_.size() << ". Please check the label file!"
- << std::endl;
- return false;
- }
- str_res += label_list_[argmax_idx];
- }
- last_index = argmax_idx;
- }
- score /= (count + 1e-6);
- if (count == 0 || std::isnan(score)) {
- score = 0.f;
- }
- return true;
- }
- bool RecognizerPostprocessor::Run(const std::vector<FDTensor> &tensors,
- std::vector<std::string> *texts,
- std::vector<float> *rec_scores) {
- // Recognizer have only 1 output tensor.
- // For Recognizer, the output tensor shape = [batch, ?, 6625]
- size_t total_size = tensors[0].shape[0];
- return Run(tensors, texts, rec_scores, 0, total_size, {});
- }
- bool RecognizerPostprocessor::Run(const std::vector<FDTensor> &tensors,
- std::vector<std::string> *texts,
- std::vector<float> *rec_scores,
- size_t start_index, size_t total_size,
- const std::vector<int> &indices) {
- if (!initialized_) {
- FDERROR << "Postprocessor is not initialized." << std::endl;
- return false;
- }
- // Recognizer have only 1 output tensor.
- const FDTensor &tensor = tensors[0];
- // For Recognizer, the output tensor shape = [batch, ?, 6625]
- size_t batch = tensor.shape[0];
- size_t length = accumulate(tensor.shape.begin() + 1, tensor.shape.end(), 1,
- std::multiplies<int>());
- if (batch <= 0) {
- FDERROR << "The infer outputTensor.shape[0] <=0, wrong infer result."
- << std::endl;
- return false;
- }
- if (start_index < 0 || total_size <= 0) {
- FDERROR << "start_index or total_size error. Correct is: 0 <= start_index "
- "< total_size"
- << std::endl;
- return false;
- }
- if ((start_index + batch) > total_size) {
- FDERROR << "start_index or total_size error. Correct is: start_index + "
- "batch(outputTensor.shape[0]) <= total_size"
- << std::endl;
- return false;
- }
- texts->resize(total_size);
- rec_scores->resize(total_size);
- const float *tensor_data = reinterpret_cast<const float *>(tensor.Data());
- for (int i_batch = 0; i_batch < batch; ++i_batch) {
- size_t real_index = i_batch + start_index;
- if (indices.size() != 0) {
- real_index = indices[i_batch + start_index];
- }
- if (!SingleBatchPostprocessor(tensor_data + i_batch * length, tensor.shape,
- &texts->at(real_index),
- &rec_scores->at(real_index))) {
- return false;
- }
- }
- return true;
- }
- } // namespace ocr
- } // namespace vision
- } // namespace ultra_infer
|