| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/segmentation/ppseg/postprocessor.h"
- #include "ultra_infer/function/cast.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- namespace segmentation {
- PaddleSegPostprocessor::PaddleSegPostprocessor(const std::string &config_file) {
- FDASSERT(ReadFromConfig(config_file),
- "Failed to create PaddleSegPreprocessor.");
- initialized_ = true;
- }
- bool PaddleSegPostprocessor::ReadFromConfig(const std::string &config_file) {
- YAML::Node cfg;
- try {
- cfg = YAML::LoadFile(config_file);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file
- << ", maybe you should check this file." << std::endl;
- return false;
- }
- if (cfg["Deploy"]["output_op"]) {
- std::string output_op = cfg["Deploy"]["output_op"].as<std::string>();
- if (output_op == "softmax") {
- is_with_softmax_ = true;
- is_with_argmax_ = false;
- } else if (output_op == "argmax") {
- is_with_softmax_ = false;
- is_with_argmax_ = true;
- } else if (output_op == "none") {
- is_with_softmax_ = false;
- is_with_argmax_ = false;
- } else {
- FDERROR << "Unexcepted output_op operator in deploy.yml: " << output_op
- << "." << std::endl;
- return false;
- }
- }
- return true;
- }
- bool PaddleSegPostprocessor::SliceOneResultFromBatchInferResults(
- const FDTensor &infer_results, FDTensor *infer_result,
- const std::vector<int64_t> &infer_result_shape, const int64_t &start_idx) {
- int64_t infer_batch = infer_results.shape[0];
- if (infer_batch == 1) {
- *infer_result = infer_results;
- // batch is 1, so ignore
- infer_result->shape = infer_result_shape;
- } else {
- if (infer_results.dtype == FDDataType::FP32) {
- const float_t *infer_results_ptr =
- reinterpret_cast<const float_t *>(infer_results.CpuData()) +
- start_idx;
- infer_result->SetExternalData(
- infer_result_shape, FDDataType::FP32,
- reinterpret_cast<void *>(const_cast<float_t *>(infer_results_ptr)));
- } else if (infer_results.dtype == FDDataType::INT64) {
- const int64_t *infer_results_ptr =
- reinterpret_cast<const int64_t *>(infer_results.CpuData()) +
- start_idx;
- infer_result->SetExternalData(
- infer_result_shape, FDDataType::INT64,
- reinterpret_cast<void *>(const_cast<int64_t *>(infer_results_ptr)));
- } else if (infer_results.dtype == FDDataType::INT32) {
- const int32_t *infer_results_ptr =
- reinterpret_cast<const int32_t *>(infer_results.CpuData()) +
- start_idx;
- infer_result->SetExternalData(
- infer_result_shape, FDDataType::INT32,
- reinterpret_cast<void *>(const_cast<int32_t *>(infer_results_ptr)));
- } else if (infer_results.dtype == FDDataType::UINT8) {
- const uint8_t *infer_results_ptr =
- reinterpret_cast<const uint8_t *>(infer_results.CpuData()) +
- start_idx;
- infer_result->SetExternalData(
- infer_result_shape, FDDataType::UINT8,
- reinterpret_cast<void *>(const_cast<uint8_t *>(infer_results_ptr)));
- } else {
- FDASSERT(
- false,
- "Require the data type for slicing is int64, fp32 or int32, but now "
- "it's %s.",
- Str(infer_results.dtype).c_str())
- return false;
- }
- }
- return true;
- }
- bool PaddleSegPostprocessor::ProcessWithScoreResult(
- const FDTensor &infer_result, const int64_t &out_num,
- SegmentationResult *result) {
- const uint8_t *argmax_infer_result_buffer = nullptr;
- const float_t *score_infer_result_buffer = nullptr;
- FDTensor argmax_infer_result;
- FDTensor max_score_result;
- std::vector<int64_t> reduce_dim{-1};
- function::ArgMax(infer_result, &argmax_infer_result, -1, FDDataType::UINT8);
- function::Max(infer_result, &max_score_result, reduce_dim);
- score_infer_result_buffer =
- reinterpret_cast<const float_t *>(max_score_result.CpuData());
- std::memcpy(result->score_map.data(), score_infer_result_buffer,
- out_num * sizeof(float_t));
- argmax_infer_result_buffer =
- reinterpret_cast<const uint8_t *>(argmax_infer_result.CpuData());
- std::memcpy(result->label_map.data(), argmax_infer_result_buffer,
- out_num * sizeof(uint8_t));
- return true;
- }
- bool PaddleSegPostprocessor::ProcessWithLabelResult(
- const FDTensor &infer_result, const int64_t &out_num,
- SegmentationResult *result) {
- if (infer_result.dtype == FDDataType::INT64) {
- const int64_t *infer_result_buffer =
- reinterpret_cast<const int64_t *>(infer_result.CpuData());
- for (int i = 0; i < out_num; i++) {
- result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
- }
- } else if (infer_result.dtype == FDDataType::INT32) {
- const int32_t *infer_result_buffer =
- reinterpret_cast<const int32_t *>(infer_result.CpuData());
- for (int i = 0; i < out_num; i++) {
- result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
- }
- } else if (infer_result.dtype == FDDataType::UINT8) {
- const uint8_t *infer_result_buffer =
- reinterpret_cast<const uint8_t *>(infer_result.CpuData());
- memcpy(result->label_map.data(), infer_result_buffer,
- out_num * sizeof(uint8_t));
- } else {
- FDASSERT(
- false,
- "Require the data type to process is int64, int32 or uint8, but now "
- "it's %s.",
- Str(infer_result.dtype).c_str());
- return false;
- }
- return true;
- }
- bool PaddleSegPostprocessor::Run(
- const std::vector<FDTensor> &infer_results,
- std::vector<SegmentationResult> *results,
- const std::map<std::string, std::vector<std::array<int, 2>>> &imgs_info) {
- // PaddleSeg has three types of inference output:
- // 1. output with argmax and without softmax. 3-D matrix N(C)HW, Channel
- // is batch_size, the element in matrix is classified label_id INT64 type.
- // 2. output without argmax and without softmax. 4-D matrix NCHW, N(batch)
- // is batch_size, Channel is the num of classes. The element is the logits
- // of classes FP32 type
- // 3. output without argmax and with softmax. 4-D matrix NCHW, the result
- // of 2 with softmax layer
- // Xdeploy output:
- // 1. label_map
- // 2. score_map(optional)
- // 3. shape: 2-D HW
- if (!initialized_) {
- FDERROR << "Postprocessor is not initialized." << std::endl;
- return false;
- }
- FDDataType infer_results_dtype = infer_results[0].dtype;
- FDASSERT(infer_results_dtype == FDDataType::INT64 ||
- infer_results_dtype == FDDataType::FP32 ||
- infer_results_dtype == FDDataType::INT32,
- "Require the data type of output is int64, fp32 or int32, but now "
- "it's %s.",
- Str(infer_results_dtype).c_str());
- auto iter_input_imgs_shape_list = imgs_info.find("shape_info");
- FDASSERT(iter_input_imgs_shape_list != imgs_info.end(),
- "Cannot find shape_info from imgs_info.");
- // For Argmax Softmax function to store transformed result below
- FDTensor transform_infer_results;
- int64_t infer_batch = infer_results[0].shape[0];
- int64_t infer_channel = 0;
- int64_t infer_height = 0;
- int64_t infer_width = 0;
- if (is_with_argmax_) {
- // infer_results with argmax
- infer_channel = 1;
- infer_height = infer_results[0].shape[1];
- infer_width = infer_results[0].shape[2];
- } else {
- // infer_results without argmax
- infer_channel = 1;
- infer_height = infer_results[0].shape[2];
- infer_width = infer_results[0].shape[3];
- if (store_score_map_) {
- infer_channel = infer_results[0].shape[1];
- std::vector<int64_t> dim{0, 2, 3, 1};
- function::Transpose(infer_results[0], &transform_infer_results, dim);
- if (!is_with_softmax_ && apply_softmax_) {
- function::Softmax(transform_infer_results, &transform_infer_results, 1);
- }
- } else {
- function::ArgMax(infer_results[0], &transform_infer_results, 1,
- FDDataType::UINT8);
- infer_results_dtype = transform_infer_results.dtype;
- }
- }
- int64_t infer_chw = infer_channel * infer_height * infer_width;
- results->resize(infer_batch);
- for (int i = 0; i < infer_batch; i++) {
- SegmentationResult *result = &((*results)[i]);
- result->Clear();
- int64_t start_idx = i * infer_chw;
- FDTensor infer_result;
- std::vector<int64_t> infer_result_shape = {infer_height, infer_width,
- infer_channel};
- if (is_with_argmax_) {
- SliceOneResultFromBatchInferResults(infer_results[0], &infer_result,
- infer_result_shape, start_idx);
- } else {
- SliceOneResultFromBatchInferResults(transform_infer_results,
- &infer_result, infer_result_shape,
- start_idx);
- }
- bool is_resized = false;
- int input_height = iter_input_imgs_shape_list->second[i][0];
- int input_width = iter_input_imgs_shape_list->second[i][1];
- if (input_height != infer_height || input_width != infer_width) {
- is_resized = true;
- }
- FDMat mat;
- // Resize interpration
- int interpolation = cv::INTER_LINEAR;
- if (is_resized) {
- if (infer_results_dtype == FDDataType::INT64 ||
- infer_results_dtype == FDDataType::INT32) {
- function::Cast(infer_result, &infer_result, FDDataType::UINT8);
- // label map resize with nearest interpolation
- interpolation = cv::INTER_NEAREST;
- }
- mat = std::move(Mat::Create(infer_result, ProcLib::OPENCV));
- Resize::Run(&mat, input_width, input_height, -1.0f, -1.0f, interpolation,
- false, ProcLib::OPENCV);
- mat.ShareWithTensor(&infer_result);
- }
- result->shape = infer_result.shape;
- // output shape is 2-D HW layout, so out_num = H * W
- int out_num =
- std::accumulate(result->shape.begin(), result->shape.begin() + 2, 1,
- std::multiplies<int>());
- if (!is_with_argmax_ && store_score_map_) {
- // output with label_map and score_map
- result->contain_score_map = true;
- result->Resize(out_num);
- ProcessWithScoreResult(infer_result, out_num, result);
- } else {
- result->Resize(out_num);
- ProcessWithLabelResult(infer_result, out_num, result);
- }
- // HWC remove C
- result->shape.erase(result->shape.begin() + 2);
- }
- return true;
- }
- } // namespace segmentation
- } // namespace vision
- } // namespace ultra_infer
|