| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/segmentation/ppseg/preprocessor.h"
- #include "ultra_infer/function/concat.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- namespace segmentation {
- PaddleSegPreprocessor::PaddleSegPreprocessor(const std::string &config_file) {
- this->config_file_ = config_file;
- FDASSERT(BuildPreprocessPipelineFromConfig(),
- "Failed to create PaddleSegPreprocessor.");
- initialized_ = true;
- }
- bool PaddleSegPreprocessor::BuildPreprocessPipelineFromConfig() {
- processors_.clear();
- YAML::Node cfg;
- processors_.push_back(std::make_shared<BGR2RGB>());
- try {
- cfg = YAML::LoadFile(config_file_);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file_
- << ", maybe you should check this file." << std::endl;
- return false;
- }
- if (cfg["Deploy"]["transforms"]) {
- auto preprocess_cfg = cfg["Deploy"]["transforms"];
- for (const auto &op : preprocess_cfg) {
- FDASSERT(op.IsMap(),
- "Require the transform information in yaml be Map type.");
- if (op["type"].as<std::string>() == "Normalize") {
- if (!disable_normalize_) {
- std::vector<float> mean = {0.5, 0.5, 0.5};
- std::vector<float> std = {0.5, 0.5, 0.5};
- if (op["mean"]) {
- mean = op["mean"].as<std::vector<float>>();
- }
- if (op["std"]) {
- std = op["std"].as<std::vector<float>>();
- }
- processors_.push_back(std::make_shared<Normalize>(mean, std));
- }
- } else if (op["type"].as<std::string>() == "Resize") {
- is_contain_resize_op_ = true;
- const auto &target_size = op["target_size"];
- int resize_width = target_size[0].as<int>();
- int resize_height = target_size[1].as<int>();
- processors_.push_back(
- std::make_shared<Resize>(resize_width, resize_height));
- } else {
- std::string op_name = op["type"].as<std::string>();
- FDERROR << "Unexcepted preprocess operator: " << op_name << "."
- << std::endl;
- return false;
- }
- }
- }
- if (cfg["Deploy"]["input_shape"]) {
- auto input_shape = cfg["Deploy"]["input_shape"];
- int input_height = input_shape[2].as<int>();
- int input_width = input_shape[3].as<int>();
- if (input_height != -1 && input_width != -1 && !is_contain_resize_op_) {
- is_contain_resize_op_ = true;
- processors_.insert(processors_.begin(),
- std::make_shared<Resize>(input_width, input_height));
- }
- }
- if (!disable_permute_) {
- processors_.push_back(std::make_shared<HWC2CHW>());
- }
- // Fusion will improve performance
- FuseTransforms(&processors_);
- return true;
- }
- bool PaddleSegPreprocessor::Apply(FDMatBatch *image_batch,
- std::vector<FDTensor> *outputs) {
- std::vector<FDMat> *images = image_batch->mats;
- if (!initialized_) {
- FDERROR << "The preprocessor is not initialized." << std::endl;
- return false;
- }
- if (images->size() == 0) {
- FDERROR << "The size of input images should be greater than 0."
- << std::endl;
- return false;
- }
- std::vector<std::array<int, 2>> shape_info;
- for (const auto &image : *images) {
- shape_info.push_back(
- {static_cast<int>(image.Height()), static_cast<int>(image.Width())});
- }
- (*imgs_info_)["shape_info"] = shape_info;
- for (size_t i = 0; i < processors_.size(); ++i) {
- if (processors_[i]->Name() == "Resize") {
- auto processor = dynamic_cast<Resize *>(processors_[i].get());
- int resize_width = -1;
- int resize_height = -1;
- std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
- if (is_vertical_screen_ && (resize_width > resize_height)) {
- if (!(processor->SetWidthAndHeight(resize_height, resize_width))) {
- FDERROR << "Failed to set width and height of "
- << processors_[i]->Name() << " processor." << std::endl;
- }
- }
- break;
- }
- }
- size_t img_num = images->size();
- // Batch preprocess : resize all images to the largest image shape in batch
- if (!is_contain_resize_op_ && img_num > 1) {
- int max_width = 0;
- int max_height = 0;
- for (size_t i = 0; i < img_num; ++i) {
- max_width = std::max(max_width, ((*images)[i]).Width());
- max_height = std::max(max_height, ((*images)[i]).Height());
- }
- pre_resize_op_->SetWidthAndHeight(max_width, max_height);
- for (size_t i = 0; i < img_num; ++i) {
- if (!(*pre_resize_op_)(&(*images)[i])) {
- FDERROR << "Failed to batch resize max_width and max_height"
- << std::endl;
- }
- }
- }
- for (size_t i = 0; i < img_num; ++i) {
- for (size_t j = 0; j < processors_.size(); ++j) {
- if (!(*(processors_[j].get()))(&((*images)[i]))) {
- FDERROR << "Failed to process image data in " << processors_[i]->Name()
- << "." << std::endl;
- return false;
- }
- }
- }
- outputs->resize(1);
- FDTensor *tensor = image_batch->Tensor();
- (*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
- tensor->Data(), tensor->device,
- tensor->device_id);
- return true;
- }
- void PaddleSegPreprocessor::DisableNormalize() {
- this->disable_normalize_ = true;
- // the DisableNormalize function will be invalid if the configuration file is
- // loaded during preprocessing
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- }
- }
- void PaddleSegPreprocessor::DisablePermute() {
- this->disable_permute_ = true;
- // the DisablePermute function will be invalid if the configuration file is
- // loaded during preprocessing
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- }
- }
- } // namespace segmentation
- } // namespace vision
- } // namespace ultra_infer
|