| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/sr/ppsr/ppmsvsr.h"
- namespace ultra_infer {
- namespace vision {
- namespace sr {
- PPMSVSR::PPMSVSR(const std::string &model_file, const std::string ¶ms_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- // unsupported ORT backend
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO};
- valid_gpu_backends = {Backend::PDINFER, Backend::TRT, Backend::ORT};
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool PPMSVSR::Initialize() {
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- mean_ = {0., 0., 0.};
- scale_ = {1., 1., 1.};
- return true;
- }
- bool PPMSVSR::Preprocess(Mat *mat, std::vector<float> &output) {
- BGR2RGB::Run(mat);
- Normalize::Run(mat, mean_, scale_, true);
- HWC2CHW::Run(mat);
- // Csat float
- float *ptr = static_cast<float *>(mat->Data());
- size_t size = mat->Width() * mat->Height() * mat->Channels();
- output = std::vector<float>(ptr, ptr + size);
- return true;
- }
- bool PPMSVSR::Predict(std::vector<cv::Mat> &imgs,
- std::vector<cv::Mat> &results) {
- // Theoretically, the more frame nums there are, the better the result will
- // be, but it will lead to a significant increase in memory
- int frame_num = imgs.size();
- int rows = imgs[0].rows;
- int cols = imgs[0].cols;
- int channels = imgs[0].channels();
- std::vector<FDTensor> input_tensors;
- input_tensors.resize(1);
- std::vector<float> all_data_temp;
- for (int i = 0; i < frame_num; i++) {
- Mat mat(imgs[i]);
- std::vector<float> data_temp;
- Preprocess(&mat, data_temp);
- all_data_temp.insert(all_data_temp.end(), data_temp.begin(),
- data_temp.end());
- }
- // share memory in order to avoid memory copy, data type must be float32
- input_tensors[0].SetExternalData({1, frame_num, channels, rows, cols},
- FDDataType::FP32, all_data_temp.data());
- input_tensors[0].shape = {1, frame_num, channels, rows, cols};
- input_tensors[0].name = InputInfoOfRuntime(0).name;
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors, results)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- bool PPMSVSR::Postprocess(std::vector<FDTensor> &infer_results,
- std::vector<cv::Mat> &results) {
- // group to image
- // output_shape is [b, n, c, h, w] n = frame_nums b=1(default)
- // b and n is dependence export model shape
- // see
- // https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
- auto output_shape = infer_results[0].shape;
- // PP-MSVSR
- int h_ = output_shape[3];
- int w_ = output_shape[4];
- int c_ = output_shape[2];
- int frame_num = output_shape[1];
- float *out_data = static_cast<float *>(infer_results[0].Data());
- cv::Mat temp = cv::Mat::zeros(h_, w_, CV_32FC3); // RGB image
- int pix_num = h_ * w_;
- int frame_pix_num = pix_num * c_;
- for (int frame = 0; frame < frame_num; frame++) {
- int index = 0;
- for (int h = 0; h < h_; ++h) {
- for (int w = 0; w < w_; ++w) {
- temp.at<cv::Vec3f>(h, w) = {
- out_data[2 * pix_num + index + frame_pix_num * frame],
- out_data[pix_num + index + frame_pix_num * frame],
- out_data[index + frame_pix_num * frame]};
- index += 1;
- }
- }
- // tmp data type is float[0-1.0],convert to uint type
- cv::Mat res = cv::Mat::zeros(temp.size(), CV_8UC3);
- temp.convertTo(res, CV_8UC3, 255);
- results.push_back(res);
- }
- return true;
- }
- } // namespace sr
- } // namespace vision
- } // namespace ultra_infer
|