| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "ultra_infer/vision/tracking/pptracking/model.h"
- #include "ultra_infer/vision/tracking/pptracking/letter_box_resize.h"
- #include "yaml-cpp/yaml.h"
- namespace ultra_infer {
- namespace vision {
- namespace tracking {
- PPTracking::PPTracking(const std::string &model_file,
- const std::string ¶ms_file,
- const std::string &config_file,
- const RuntimeOption &custom_option,
- const ModelFormat &model_format) {
- config_file_ = config_file;
- valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
- valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
- runtime_option = custom_option;
- runtime_option.model_format = model_format;
- runtime_option.model_file = model_file;
- runtime_option.params_file = params_file;
- initialized = Initialize();
- }
- bool PPTracking::BuildPreprocessPipelineFromConfig() {
- processors_.clear();
- YAML::Node cfg;
- try {
- cfg = YAML::LoadFile(config_file_);
- } catch (YAML::BadFile &e) {
- FDERROR << "Failed to load yaml file " << config_file_
- << ", maybe you should check this file." << std::endl;
- return false;
- }
- // Get draw_threshold for visualization
- if (cfg["draw_threshold"].IsDefined()) {
- draw_threshold_ = cfg["draw_threshold"].as<float>();
- } else {
- FDERROR << "Please set draw_threshold." << std::endl;
- return false;
- }
- // Get config for tracker
- if (cfg["tracker"].IsDefined()) {
- if (cfg["tracker"]["conf_thres"].IsDefined()) {
- conf_thresh_ = cfg["tracker"]["conf_thres"].as<float>();
- } else {
- std::cerr << "Please set conf_thres in tracker." << std::endl;
- return false;
- }
- if (cfg["tracker"]["min_box_area"].IsDefined()) {
- min_box_area_ = cfg["tracker"]["min_box_area"].as<float>();
- }
- if (cfg["tracker"]["tracked_thresh"].IsDefined()) {
- tracked_thresh_ = cfg["tracker"]["tracked_thresh"].as<float>();
- }
- }
- processors_.push_back(std::make_shared<BGR2RGB>());
- for (const auto &op : cfg["Preprocess"]) {
- std::string op_name = op["type"].as<std::string>();
- if (op_name == "Resize") {
- bool keep_ratio = op["keep_ratio"].as<bool>();
- auto target_size = op["target_size"].as<std::vector<int>>();
- int interp = op["interp"].as<int>();
- FDASSERT(target_size.size() == 2,
- "Require size of target_size be 2, but now it's %lu.",
- target_size.size());
- if (!keep_ratio) {
- int width = target_size[1];
- int height = target_size[0];
- processors_.push_back(
- std::make_shared<Resize>(width, height, -1.0, -1.0, interp, false));
- } else {
- int min_target_size = std::min(target_size[0], target_size[1]);
- int max_target_size = std::max(target_size[0], target_size[1]);
- std::vector<int> max_size;
- if (max_target_size > 0) {
- max_size.push_back(max_target_size);
- max_size.push_back(max_target_size);
- }
- processors_.push_back(std::make_shared<ResizeByShort>(
- min_target_size, interp, true, max_size));
- }
- } else if (op_name == "LetterBoxResize") {
- auto target_size = op["target_size"].as<std::vector<int>>();
- FDASSERT(target_size.size() == 2,
- "Require size of target_size be 2, but now it's %lu.",
- target_size.size());
- std::vector<float> color{127.0f, 127.0f, 127.0f};
- if (op["fill_value"].IsDefined()) {
- color = op["fill_value"].as<std::vector<float>>();
- }
- processors_.push_back(
- std::make_shared<LetterBoxResize>(target_size, color));
- } else if (op_name == "NormalizeImage") {
- auto mean = op["mean"].as<std::vector<float>>();
- auto std = op["std"].as<std::vector<float>>();
- bool is_scale = true;
- if (op["is_scale"]) {
- is_scale = op["is_scale"].as<bool>();
- }
- std::string norm_type = "mean_std";
- if (op["norm_type"]) {
- norm_type = op["norm_type"].as<std::string>();
- }
- if (norm_type != "mean_std") {
- std::fill(mean.begin(), mean.end(), 0.0);
- std::fill(std.begin(), std.end(), 1.0);
- }
- processors_.push_back(std::make_shared<Normalize>(mean, std, is_scale));
- } else if (op_name == "Permute") {
- // Do nothing, do permute as the last operation
- continue;
- // processors_.push_back(std::make_shared<HWC2CHW>());
- } else if (op_name == "Pad") {
- auto size = op["size"].as<std::vector<int>>();
- auto value = op["fill_value"].as<std::vector<float>>();
- processors_.push_back(std::make_shared<Cast>("float"));
- processors_.push_back(
- std::make_shared<PadToSize>(size[1], size[0], value));
- } else if (op_name == "PadStride") {
- auto stride = op["stride"].as<int>();
- processors_.push_back(
- std::make_shared<StridePad>(stride, std::vector<float>(3, 0)));
- } else {
- FDERROR << "Unexcepted preprocess operator: " << op_name << "."
- << std::endl;
- return false;
- }
- }
- processors_.push_back(std::make_shared<HWC2CHW>());
- FuseTransforms(&processors_);
- return true;
- }
- bool PPTracking::Initialize() {
- if (!BuildPreprocessPipelineFromConfig()) {
- FDERROR << "Failed to build preprocess pipeline from configuration file."
- << std::endl;
- return false;
- }
- if (!InitRuntime()) {
- FDERROR << "Failed to initialize ultra_infer backend." << std::endl;
- return false;
- }
- // create JDETracker instance
- jdeTracker_ = std::unique_ptr<JDETracker>(new JDETracker);
- return true;
- }
- bool PPTracking::Predict(cv::Mat *img, MOTResult *result) {
- Mat mat(*img);
- std::vector<FDTensor> input_tensors;
- if (!Preprocess(&mat, &input_tensors)) {
- FDERROR << "Failed to preprocess input image." << std::endl;
- return false;
- }
- std::vector<FDTensor> output_tensors;
- if (!Infer(input_tensors, &output_tensors)) {
- FDERROR << "Failed to inference." << std::endl;
- return false;
- }
- if (!Postprocess(output_tensors, result)) {
- FDERROR << "Failed to post process." << std::endl;
- return false;
- }
- return true;
- }
- bool PPTracking::Preprocess(Mat *mat, std::vector<FDTensor> *outputs) {
- int origin_w = mat->Width();
- int origin_h = mat->Height();
- for (size_t i = 0; i < processors_.size(); ++i) {
- if (!(*(processors_[i].get()))(mat)) {
- FDERROR << "Failed to process image data in " << processors_[i]->Name()
- << "." << std::endl;
- return false;
- }
- }
- // LetterBoxResize(mat);
- // Normalize::Run(mat,mean_,scale_,is_scale_);
- // HWC2CHW::Run(mat);
- Cast::Run(mat, "float");
- outputs->resize(3);
- // image_shape
- (*outputs)[0].Allocate({1, 2}, FDDataType::FP32, InputInfoOfRuntime(0).name);
- float *shape = static_cast<float *>((*outputs)[0].MutableData());
- shape[0] = mat->Height();
- shape[1] = mat->Width();
- // image
- (*outputs)[1].name = InputInfoOfRuntime(1).name;
- mat->ShareWithTensor(&((*outputs)[1]));
- (*outputs)[1].ExpandDim(0);
- // scale
- (*outputs)[2].Allocate({1, 2}, FDDataType::FP32, InputInfoOfRuntime(2).name);
- float *scale = static_cast<float *>((*outputs)[2].MutableData());
- scale[0] = mat->Height() * 1.0 / origin_h;
- scale[1] = mat->Width() * 1.0 / origin_w;
- return true;
- }
- void FilterDets(const float conf_thresh, const cv::Mat &dets,
- std::vector<int> *index) {
- for (int i = 0; i < dets.rows; ++i) {
- float score = *dets.ptr<float>(i, 4);
- if (score > conf_thresh) {
- index->push_back(i);
- }
- }
- }
- bool PPTracking::Postprocess(std::vector<FDTensor> &infer_result,
- MOTResult *result) {
- auto bbox_shape = infer_result[0].shape;
- auto bbox_data = static_cast<float *>(infer_result[0].Data());
- auto emb_shape = infer_result[1].shape;
- auto emb_data = static_cast<float *>(infer_result[1].Data());
- cv::Mat dets(bbox_shape[0], 6, CV_32FC1, bbox_data);
- cv::Mat emb(bbox_shape[0], emb_shape[1], CV_32FC1, emb_data);
- result->Clear();
- std::vector<Track> tracks;
- std::vector<int> valid;
- FilterDets(conf_thresh_, dets, &valid);
- cv::Mat new_dets, new_emb;
- for (int i = 0; i < valid.size(); ++i) {
- new_dets.push_back(dets.row(valid[i]));
- new_emb.push_back(emb.row(valid[i]));
- }
- jdeTracker_->update(new_dets, new_emb, &tracks);
- if (tracks.size() == 0) {
- std::array<int, 4> box = {
- int(*dets.ptr<float>(0, 0)), int(*dets.ptr<float>(0, 1)),
- int(*dets.ptr<float>(0, 2)), int(*dets.ptr<float>(0, 3))};
- result->boxes.push_back(box);
- result->ids.push_back(1);
- result->scores.push_back(*dets.ptr<float>(0, 4));
- } else {
- std::vector<Track>::iterator titer;
- for (titer = tracks.begin(); titer != tracks.end(); ++titer) {
- if (titer->score < tracked_thresh_) {
- continue;
- } else {
- float w = titer->ltrb[2] - titer->ltrb[0];
- float h = titer->ltrb[3] - titer->ltrb[1];
- bool vertical = w / h > 1.6;
- float area = w * h;
- if (area > min_box_area_ && !vertical) {
- std::array<int, 4> box = {int(titer->ltrb[0]), int(titer->ltrb[1]),
- int(titer->ltrb[2]), int(titer->ltrb[3])};
- result->boxes.push_back(box);
- result->ids.push_back(titer->id);
- result->scores.push_back(titer->score);
- }
- }
- }
- }
- if (!is_record_trail_)
- return true;
- int nums = result->boxes.size();
- for (int i = 0; i < nums; i++) {
- float center_x = (result->boxes[i][0] + result->boxes[i][2]) / 2;
- float center_y = (result->boxes[i][1] + result->boxes[i][3]) / 2;
- int id = result->ids[i];
- recorder_->Add(id, {int(center_x), int(center_y)});
- }
- return true;
- }
- void PPTracking::BindRecorder(TrailRecorder *recorder) {
- recorder_ = recorder;
- is_record_trail_ = true;
- }
- void PPTracking::UnbindRecorder() {
- is_record_trail_ = false;
- std::map<int, std::vector<std::array<int, 2>>>::iterator iter;
- for (iter = recorder_->records.begin(); iter != recorder_->records.end();
- iter++) {
- iter->second.clear();
- iter->second.shrink_to_fit();
- }
- recorder_->records.clear();
- std::map<int, std::vector<std::array<int, 2>>>().swap(recorder_->records);
- recorder_ = nullptr;
- }
- } // namespace tracking
- } // namespace vision
- } // namespace ultra_infer
|