MaskFormer_tiny.yaml 1.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. batch_size: 4
  2. iters: 160000
  3. train_dataset:
  4. type: Dataset
  5. dataset_root: data/Cityscapes/
  6. train_path: data/Cityscapes/train.txt
  7. num_classes: 150
  8. transforms:
  9. - type: ResizeByShort
  10. short_size: [256, 307, 358, 409, 460, 512, 563, 614, 665, 716, 768, 819, 870, 921, 972, 1024]
  11. max_size: 2048
  12. - type: RandomPaddingCrop
  13. crop_size: [512, 512]
  14. - type: RandomDistort
  15. brightness_range: 0.125
  16. brightness_prob: 1.0
  17. contrast_range: 0.5
  18. contrast_prob: 1.0
  19. saturation_range: 0.5
  20. saturation_prob: 1.0
  21. hue_range: 18
  22. hue_prob: 1.0
  23. - type: RandomHorizontalFlip
  24. - type: GenerateInstanceTargets
  25. num_classes: 150
  26. ignore_index: 255
  27. - type: Normalize
  28. mean: [0.485, 0.456, 0.406]
  29. std: [0.229, 0.224, 0.225]
  30. mode: train
  31. val_dataset:
  32. type: Dataset
  33. dataset_root: datasets/Cityscapes
  34. val_path: datasets/Cityscapes/val.txt
  35. num_classes: 150
  36. transforms:
  37. - type: Resize
  38. target_size: [512, 512]
  39. keep_ratio: False
  40. interp: LINEAR
  41. - type: Normalize
  42. mean: [0.485, 0.456, 0.406]
  43. std: [0.229, 0.224, 0.225]
  44. mode: val
  45. model:
  46. type: MaskFormer
  47. num_classes: 150
  48. backbone:
  49. type: SwinTransformer_tiny_patch4_window7_224_maskformer
  50. pretrained: https://bj.bcebos.com/paddleseg/paddleseg/dygraph/ade20k/maskformer_ade20k_swin_tiny/pretrain/model.pdparams
  51. optimizer:
  52. type: AdamW
  53. weight_decay: 0.01
  54. custom_cfg:
  55. - name: backbone
  56. lr_mult: 1.0
  57. - name: norm
  58. weight_decay_mult: 0.0
  59. - name: relative_position_bias_table
  60. weight_decay_mult: 0.0
  61. grad_clip_cfg:
  62. name: ClipGradByNorm
  63. clip_norm: 0.01
  64. lr_scheduler:
  65. type: PolynomialDecay
  66. warmup_iters: 1500
  67. warmup_start_lr: 6.0e-11
  68. learning_rate: 6.0e-05
  69. end_lr: 0
  70. power: 0.9
  71. loss:
  72. types:
  73. - type: MaskFormerLoss
  74. num_classes: 150
  75. eos_coef: 0.1
  76. coef: [1]