| 12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- # 环境变量配置,用于控制是否使用GPU
- # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu
- import os
- os.environ['CUDA_VISIBLE_DEVICES'] = '0'
- import cv2
- import numpy as np
- import paddlex as pdx
- model_dir = 'output/unet_3/best_model'
- data_dir = 'google_change_det_dataset'
- file_list = 'google_change_det_dataset/val_list.txt'
- save_dir = 'output/unet/pred'
- if not os.path.exists(save_dir):
- os.makedirs(save_dir)
- color = [0, 0, 0, 255, 255, 255]
- model = pdx.load_model(model_dir)
- with open(file_list, 'r') as f:
- for line in f:
- items = line.strip().split()
- img_file_1 = os.path.join(data_dir, items[0])
- img_file_2 = os.path.join(data_dir, items[1])
- # 原图是tiff格式的图片,PaddleX统一使用gdal库读取
- # 因训练数据已经转换成bmp格式,故此处使用opencv读取三通道的tiff图片
- #image1 = transforms.Compose.read_img(img_file_1)
- #image2 = transforms.Compose.read_img(img_file_2)
- image1 = cv2.imread(img_file_1)
- image2 = cv2.imread(img_file_2)
- image = np.concatenate((image1, image2), axis=-1)
- # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/models/semantic_segmentation.html#overlap-tile-predict
- pred = model.overlap_tile_predict(
- img_file=image,
- tile_size=(769, 769),
- pad_size=[512, 512],
- batch_size=4)
- pdx.seg.visualize(
- img_file_1, pred, weight=0., save_dir=save_dir, color=color)
|