table_recognition.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. # copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from .utils import *
  16. from ..base import BasePipeline
  17. from ..ocr import OCRPipeline
  18. from ....utils import logging
  19. from ...components import CropByBoxes
  20. from ...results import OCRResult, TableResult, StructureTableResult
  21. class TableRecPipeline(BasePipeline):
  22. """Table Recognition Pipeline"""
  23. entities = "table_recognition"
  24. def __init__(
  25. self,
  26. layout_model,
  27. text_det_model,
  28. text_rec_model,
  29. table_model,
  30. layout_batch_size=1,
  31. text_det_batch_size=1,
  32. text_rec_batch_size=1,
  33. table_batch_size=1,
  34. predictor_kwargs=None,
  35. ):
  36. self.layout_model = layout_model
  37. self.text_det_model = text_det_model
  38. self.text_rec_model = text_rec_model
  39. self.table_model = table_model
  40. self.layout_batch_size = layout_batch_size
  41. self.text_det_batch_size = text_det_batch_size
  42. self.text_rec_batch_size = text_rec_batch_size
  43. self.table_batch_size = table_batch_size
  44. super().__init__(predictor_kwargs=predictor_kwargs)
  45. self._build_predictor()
  46. # self.set_predictor(layout_batch_size, text_det_batch_size,text_rec_batch_size, table_batch_size)
  47. def _build_predictor(
  48. self,
  49. ):
  50. self.layout_predictor = self._create_model(model=self.layout_model)
  51. self.ocr_pipeline = OCRPipeline(
  52. self.text_det_model,
  53. self.text_rec_model,
  54. self.predictor_kwargs,
  55. )
  56. self.table_predictor = self._create_model(model=self.table_model)
  57. self._crop_by_boxes = CropByBoxes()
  58. self._match = TableMatch(filter_ocr_result=False)
  59. self.layout_predictor.set_predictor(batch_size=self.layout_batch_size)
  60. self.ocr_pipeline.text_rec_model.set_predictor(
  61. batch_size=self.text_rec_batch_size
  62. )
  63. self.table_predictor.set_predictor(batch_size=self.table_batch_size)
  64. def set_predictor(
  65. self,
  66. layout_batch_size=None,
  67. text_det_batch_size=None,
  68. text_rec_batch_size=None,
  69. table_batch_size=None,
  70. ):
  71. if text_det_batch_size and text_det_batch_size > 1:
  72. logging.warning(
  73. f"text det model only support batch_size=1 now,the setting of text_det_batch_size={text_det_batch_size} will not using! "
  74. )
  75. if layout_batch_size:
  76. self.layout_predictor.set_predictor(batch_size=layout_batch_size)
  77. if text_rec_batch_size:
  78. self.ocr_pipeline.rec_model.set_predictor(batch_size=text_rec_batch_size)
  79. if table_batch_size:
  80. self.table_predictor.set_predictor(batch_size=table_batch_size)
  81. def predict(self, x):
  82. for layout_pred, ocr_pred in zip(
  83. self.layout_predictor(x), self.ocr_pipeline(x)
  84. ):
  85. single_img_res = {
  86. "input_path": "",
  87. "layout_result": {},
  88. "ocr_result": {},
  89. "table_result": [],
  90. }
  91. # update layout result
  92. single_img_res["input_path"] = layout_pred["input_path"]
  93. single_img_res["layout_result"] = layout_pred
  94. subs_of_img = list(self._crop_by_boxes(layout_pred))
  95. # get cropped images with label "table"
  96. table_subs = []
  97. for sub in subs_of_img:
  98. box = sub["box"]
  99. if sub["label"].lower() == "table":
  100. table_subs.append(sub)
  101. _, ocr_res = self.get_related_ocr_result(box, ocr_pred)
  102. table_res, all_table_ocr_res = self.get_table_result(table_subs)
  103. for table_ocr_res in all_table_ocr_res:
  104. ocr_res["dt_polys"].extend(table_ocr_res["dt_polys"])
  105. ocr_res["rec_text"].extend(table_ocr_res["rec_text"])
  106. ocr_res["rec_score"].extend(table_ocr_res["rec_score"])
  107. single_img_res["table_result"] = table_res
  108. single_img_res["ocr_result"] = OCRResult(ocr_res)
  109. yield TableResult(single_img_res)
  110. def get_related_ocr_result(self, box, ocr_res):
  111. dt_polys_list = []
  112. rec_text_list = []
  113. score_list = []
  114. unmatched_ocr_res = {"dt_polys": [], "rec_text": [], "rec_score": []}
  115. unmatched_ocr_res["input_path"] = ocr_res["input_path"]
  116. for i, text_box in enumerate(ocr_res["dt_polys"]):
  117. text_box_area = convert_4point2rect(text_box)
  118. if is_inside(text_box_area, box):
  119. dt_polys_list.append(text_box)
  120. rec_text_list.append(ocr_res["rec_text"][i])
  121. score_list.append(ocr_res["rec_score"][i])
  122. else:
  123. unmatched_ocr_res["dt_polys"].append(text_box)
  124. unmatched_ocr_res["rec_text"].append(ocr_res["rec_text"][i])
  125. unmatched_ocr_res["rec_score"].append(ocr_res["rec_score"][i])
  126. return (dt_polys_list, rec_text_list, score_list), unmatched_ocr_res
  127. def get_table_result(self, input_imgs):
  128. table_res_list = []
  129. ocr_res_list = []
  130. table_index = 0
  131. img_list = [img["img"] for img in input_imgs]
  132. for input_img, table_pred, ocr_pred in zip(
  133. input_imgs, self.table_predictor(img_list), self.ocr_pipeline(img_list)
  134. ):
  135. single_table_box = table_pred["bbox"]
  136. ori_x, ori_y, _, _ = input_img["box"]
  137. ori_bbox_list = np.array(
  138. get_ori_coordinate_for_table(ori_x, ori_y, single_table_box),
  139. dtype=np.float32,
  140. )
  141. ori_ocr_bbox_list = np.array(
  142. get_ori_coordinate_for_table(ori_x, ori_y, ocr_pred["dt_polys"]),
  143. dtype=np.float32,
  144. )
  145. html_res = self._match(table_pred, ocr_pred)
  146. ocr_pred["dt_polys"] = ori_ocr_bbox_list
  147. table_res_list.append(
  148. StructureTableResult(
  149. {
  150. "input_path": input_img["input_path"],
  151. "layout_bbox": [int(x) for x in input_img["box"]],
  152. "bbox": ori_bbox_list,
  153. "img_idx": table_index,
  154. "html": html_res,
  155. }
  156. )
  157. )
  158. ocr_res_list.append(ocr_pred)
  159. table_index += 1
  160. return table_res_list, ocr_res_list