| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os.path as osp
- from collections import defaultdict
- from pathlib import Path
- import pandas as pd
- from .....utils.errors import DatasetFileNotFoundError
- def check(dataset_dir, output, sample_num=10):
- """check dataset"""
- dataset_dir = osp.abspath(dataset_dir)
- if not osp.exists(dataset_dir) or not osp.isdir(dataset_dir):
- raise DatasetFileNotFoundError(file_path=dataset_dir)
- sample_cnts = dict()
- tables = defaultdict(list)
- vis_save_dir = osp.join(output, "demo_data")
- tags = ["train", "val"]
- for _, tag in enumerate(tags):
- file_list = osp.join(dataset_dir, f"{tag}.csv")
- if not osp.exists(file_list):
- if tag in ("train", "val"):
- # train and val file lists must exist
- raise DatasetFileNotFoundError(
- file_path=file_list,
- solution=f"Ensure that both `train.csv` and `val.csv` exist in \
- {dataset_dir}",
- )
- else:
- continue
- else:
- df = pd.read_csv(file_list)
- sample_cnts[tag] = len(df)
- vis_path = osp.join(vis_save_dir, f"{tag}.csv")
- Path(vis_path).parent.mkdir(parents=True, exist_ok=True)
- vis_df = df.iloc[:sample_num, :]
- vis_df.to_csv(vis_path, index=False)
- header_list = df.columns.to_list()
- data_list = df.head(10).values.tolist()
- tables[tag] = [header_list] + data_list
- attrs = {}
- attrs["train_samples"] = sample_cnts["train"]
- attrs["train_table"] = tables["train"]
- attrs["val_samples"] = sample_cnts["val"]
- attrs["val_table"] = tables["val"]
- return attrs
|