| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Any
- from .....utils.deps import function_requires_deps, is_dep_available
- from ...infra import utils as serving_utils
- from ...infra.config import AppConfig
- from ...infra.models import AIStudioResultResponse
- from ...schemas.ts_classification import INFER_ENDPOINT, InferRequest, InferResult
- from .._app import create_app, primary_operation
- if is_dep_available("fastapi"):
- from fastapi import FastAPI
- @function_requires_deps("fastapi")
- def create_pipeline_app(pipeline: Any, app_config: AppConfig) -> "FastAPI":
- app, ctx = create_app(
- pipeline=pipeline, app_config=app_config, app_aiohttp_session=True
- )
- @primary_operation(
- app,
- INFER_ENDPOINT,
- "infer",
- )
- async def _infer(request: InferRequest) -> AIStudioResultResponse[InferResult]:
- pipeline = ctx.pipeline
- aiohttp_session = ctx.aiohttp_session
- file_bytes = await serving_utils.get_raw_bytes_async(
- request.csv, aiohttp_session
- )
- df = serving_utils.csv_bytes_to_data_frame(file_bytes)
- result = (await pipeline.infer(df))[0]
- label = str(result["classification"].at[0, "classid"])
- score = float(result["classification"].at[0, "score"])
- if ctx.config.visualize:
- output_image = serving_utils.base64_encode(
- serving_utils.image_to_bytes(result.img["res"].convert("RGB"))
- )
- else:
- output_image = None
- return AIStudioResultResponse[InferResult](
- logId=serving_utils.generate_log_id(),
- result=InferResult(label=label, score=score, image=output_image),
- )
- return app
|