| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- # coding: utf8
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from collections import OrderedDict
- import paddle.fluid as fluid
- from paddle.fluid.initializer import MSRA
- from paddle.fluid.param_attr import ParamAttr
- from .model_utils.libs import sigmoid_to_softmax
- from .model_utils.loss import softmax_with_loss
- from .model_utils.loss import dice_loss
- from .model_utils.loss import bce_loss
- import paddlex
- import paddlex.utils.logging as logging
- class HRNet(object):
- def __init__(self,
- num_classes,
- mode='train',
- width=18,
- use_bce_loss=False,
- use_dice_loss=False,
- class_weight=None,
- ignore_index=255,
- fixed_input_shape=None):
- # dice_loss或bce_loss只适用两类分割中
- if num_classes > 2 and (use_bce_loss or use_dice_loss):
- raise ValueError(
- "dice loss and bce loss is only applicable to binary classfication"
- )
- if class_weight is not None:
- if isinstance(class_weight, list):
- if len(class_weight) != num_classes:
- raise ValueError(
- "Length of class_weight should be equal to number of classes"
- )
- elif isinstance(class_weight, str):
- if class_weight.lower() != 'dynamic':
- raise ValueError(
- "if class_weight is string, must be dynamic!")
- else:
- raise TypeError(
- 'Expect class_weight is a list or string but receive {}'.
- format(type(class_weight)))
- self.num_classes = num_classes
- self.mode = mode
- self.use_bce_loss = use_bce_loss
- self.use_dice_loss = use_dice_loss
- self.class_weight = class_weight
- self.ignore_index = ignore_index
- self.fixed_input_shape = fixed_input_shape
- self.backbone = paddlex.cv.nets.hrnet.HRNet(
- width=width, feature_maps="stage4")
- def build_net(self, inputs):
- if self.use_dice_loss or self.use_bce_loss:
- self.num_classes = 1
- image = inputs['image']
- st4 = self.backbone(image)
- # upsample
- shape = fluid.layers.shape(st4[0])[-2:]
- st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=shape)
- st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=shape)
- st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=shape)
- out = fluid.layers.concat(st4, axis=1)
- last_channels = sum(self.backbone.channels[self.backbone.width][-1])
- out = self._conv_bn_layer(
- input=out,
- filter_size=1,
- num_filters=last_channels,
- stride=1,
- if_act=True,
- name='conv-2')
- out = fluid.layers.conv2d(
- input=out,
- num_filters=self.num_classes,
- filter_size=1,
- stride=1,
- padding=0,
- act=None,
- param_attr=ParamAttr(
- initializer=MSRA(), name='conv-1_weights'),
- bias_attr=False)
- input_shape = fluid.layers.shape(image)[-2:]
- logit = fluid.layers.resize_bilinear(out, input_shape)
- if self.num_classes == 1:
- out = sigmoid_to_softmax(logit)
- out = fluid.layers.transpose(out, [0, 2, 3, 1])
- else:
- out = fluid.layers.transpose(logit, [0, 2, 3, 1])
- pred = fluid.layers.argmax(out, axis=3)
- pred = fluid.layers.unsqueeze(pred, axes=[3])
- if self.mode == 'train':
- label = inputs['label']
- mask = label != self.ignore_index
- return self._get_loss(logit, label, mask)
- elif self.mode == 'eval':
- label = inputs['label']
- mask = label != self.ignore_index
- loss = self._get_loss(logit, label, mask)
- return loss, pred, label, mask
- else:
- if self.num_classes == 1:
- logit = sigmoid_to_softmax(logit)
- else:
- logit = fluid.layers.softmax(logit, axis=1)
- return pred, logit
- def generate_inputs(self):
- inputs = OrderedDict()
- if self.fixed_input_shape is not None:
- input_shape = [
- None, 3, self.fixed_input_shape[1], self.fixed_input_shape[0]
- ]
- inputs['image'] = fluid.data(
- dtype='float32', shape=input_shape, name='image')
- else:
- inputs['image'] = fluid.data(
- dtype='float32', shape=[None, 3, None, None], name='image')
- if self.mode == 'train':
- inputs['label'] = fluid.data(
- dtype='int32', shape=[None, 1, None, None], name='label')
- elif self.mode == 'eval':
- inputs['label'] = fluid.data(
- dtype='int32', shape=[None, 1, None, None], name='label')
- return inputs
- def _get_loss(self, logit, label, mask):
- avg_loss = 0
- if not (self.use_dice_loss or self.use_bce_loss):
- avg_loss += softmax_with_loss(
- logit,
- label,
- mask,
- num_classes=self.num_classes,
- weight=self.class_weight,
- ignore_index=self.ignore_index)
- else:
- if self.use_dice_loss:
- avg_loss += dice_loss(logit, label, mask)
- if self.use_bce_loss:
- avg_loss += bce_loss(
- logit, label, mask, ignore_index=self.ignore_index)
- return avg_loss
- def _conv_bn_layer(self,
- input,
- filter_size,
- num_filters,
- stride=1,
- padding=1,
- num_groups=1,
- if_act=True,
- name=None):
- conv = fluid.layers.conv2d(
- input=input,
- num_filters=num_filters,
- filter_size=filter_size,
- stride=stride,
- padding=(filter_size - 1) // 2,
- groups=num_groups,
- act=None,
- param_attr=ParamAttr(
- initializer=MSRA(), name=name + '_weights'),
- bias_attr=False)
- bn_name = name + '_bn'
- bn = fluid.layers.batch_norm(
- input=conv,
- param_attr=ParamAttr(
- name=bn_name + "_scale",
- initializer=fluid.initializer.Constant(1.0)),
- bias_attr=ParamAttr(
- name=bn_name + "_offset",
- initializer=fluid.initializer.Constant(0.0)),
- moving_mean_name=bn_name + '_mean',
- moving_variance_name=bn_name + '_variance')
- if if_act:
- bn = fluid.layers.relu(bn)
- return bn
|