test_anomaly_detection.py 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from paddlex_hpi.models import UadPredictor
  16. from tests.models.base import BaseTestPredictor
  17. from paddlex.inference.results import SegResult
  18. MODEL_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/uad_model.zip"
  19. INPUT_DATA_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/uad_input.png"
  20. EXPECTED_RESULT_URL = "https://paddle-model-ecology.bj.bcebos.com/paddlex/PaddleX3.0/deploy/paddlex_hpi/tests/models/uad_result.json"
  21. class TestUadPredictor(BaseTestPredictor):
  22. @property
  23. def model_url(self):
  24. return MODEL_URL
  25. @property
  26. def input_data_url(self):
  27. return INPUT_DATA_URL
  28. @property
  29. def expected_result_url(self):
  30. return EXPECTED_RESULT_URL
  31. @property
  32. def predictor_cls(self):
  33. return UadPredictor
  34. def _check_result(self, result, expected_result):
  35. assert isinstance(result, SegResult)
  36. assert "input_img" in result
  37. result.pop("input_img")
  38. assert set(result) == set(expected_result)
  39. pred = result["pred"]
  40. expected_pred = np.array(expected_result["pred"], dtype=np.int32)
  41. assert pred.shape == expected_pred.shape
  42. assert (pred != expected_pred).sum() / pred.size < 0.01